VVERACODE

Octoloer 2025 Unelaiie
GenAl Code

i \} Security
| Build an app that . Re port

ASSESSING THE SECURITY
PERFORMANCE OF NEWER LLMs

2025 GENAI CODE SECURITY REPORT

Contents

October 2025 Update 03
Introduction 12
Methodology & Context 14
Results & Analysis 19
Overall 19
Performance across languages 20
Performance across CWEs 21
Performance across model sizes 22
Performance over time 23
Discussion 24
Conclusion 26

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

October 2025 Update:

Security Performance
of Newer LLMs

€
A o .

In July of 2025, Veracode’s Research team
published analysis of the security of code
generated by over 100 large language models
(LLMs) for four major programming languages.

The landscape of Al-generated code is evolving
at an unprecedented pace. As new models are
released and existing ones are updated with
increasing frequency, we are committed to
providing regular updates to ensure our
insights remain current and actionable.

+

This update provides new findings based on our
latest GenAl Code Security benchmark analysis,
conducted in October 2025. The data presented
here reflects the performance of the most
recent LLMs, and this section should be
considered the most current perspective on the
state of Al-generated code security.

The Executive Summary and detailed analysis
that follow provide foundational context, and
their findings remain broadly relevant. We
conducted the GenAl Code Security benchmark
using the latest LLMs to evaluate their ability to
produce secure, high-quality code in real-world
scenarios. Here are the latest findings.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

Findings

LLMs tested
and their scores:

Our latest analysis, using the same methodology and 80-task benchmark as the original report,

reveals that:

New model releases clustered near prior
performance: Excluding OpenAl, newer
models generally remained in the ~50-59%

OpenAl’s latest GPT-5 reasoning models
improved materially. GPT-5 Mini (72%) and
GPT-5 (70%) set new records on our

security pass-rate band. benchmark.
Model Security passed % Model release date
Anthropic: Claude Sonnet 4.5 50% 2025-09-29
xAl: Grok Code Fast 1 55% 2025-08-26
OpenAl: GPT-5-chat 52% 2025-08-07
OpenAl: GPT-5 Nano 65% 2025-08-07
OpenAl: GPT-5 Mini 72% 2025-08-07
OpenAl: GPT-5 70% 2025-08-07
OpenAl: gpt-oss-20b 57% 2025-08-05
OpenAl: gpt-0ss-120b 65% 2025-08-05
Anthropic: Claude Opus 4.1 49% 2025-08-05
Qwen: Qwen3 Coder 30B A3B Instruct 50% 2025-07-31
Qwen: Qwen3 Coder 480B A35B 50% 2025-07-23
xAl: Grok 4 55% 2025-07-09
Google: Gemini 2.5 Pro 59% 2025-06-17
Google: Gemini 2.5 Flash 51% 2025-06-17
Anthropic: Claude Opus 4 50% 2025-05-22
Anthropic: Claude Sonnet 4 53% 2025-05-22
OpenAl: 04 Mini High 59% 2025-04-16
OpenAl: 04 Mini 59% 2025-04-16
OpenAl: GPT-4.1 59% 2025-04-14
OpenAl: GPT-4.1 Nano 52% 2025-04-14

VVERACODE

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

Performance of new LLMs
compared to old ones

FIGURETa ©

Security Pass Rate vs
LLM Release Date

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

Pass rate

— Syntax passrate — Security pass rate
10

(&)

0.8

0.6

0.4

02

0.0 @

VVERACODE

September March October April November
2022 2023 2024

May December
2025

Release date

We saw a slight upward trend in the security of LLMs, completely driven by
the OpenAl’s latest reasoning models. Non-OpenAl models continued to
perform the same relative to their previous iterations.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

OpenAl in focus: where did the gains come from?

OpenAl’s reasoning models posted the largest
step-ups. Compared to previous generations
that scored between 50-60%, OpenAl’s new
reasoning models, which take extra time to
undergo an internal dialogue before
producing a customer-facing answer,
produced scores pushing 65-70%. In fact, two
of the GPT-5 reasoning models set new
records in the benchmark:

+ GPT-5-mini: 72%

+ GPT-5:70%

Other providers (Anthropic, Google Gemini, Qwen)

Newer models from other LLM providers did
not show improved security performance in
our benchmark.In fact, we saw a small dip in
security score in Anthropic’s latest releases of
Claude Sonnet 4.5 and Claude Opus 4.1when
compared to previous generations:

Interestingly, all the models that scored
higher were reasoning models. OpenAl’s
non-reasoning model (gpt-5-chat) is the only
GPT-5 model that scored below average
(52%). This strongly suggests that OpenAl’s
reasoning tuning may be enhancing security

performance.

» Claude Sonnet 3.5: 51%

» Claude Sonnet 3.7: 51%

» Claude Sonnet 4: 53%

« Claude Opus 4: 50%

» Claude Opus 4.1: 49%

» Claude Sonnet 4.5: 50%

The performance of Qwen and Grok models
remained largely unchanged in the 50-59%
security rate band we saw earlier.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

By programming language

FIGURE2a o©
Security Pass Rate vs — Python — Javascript — Csharp — Java VVERACODE
LLM Release Date 10
Stratified by
Language
o
0.8 <
0.6
[©
©
(92}
(%2}
&L C
0.4
o > o0 O oo ® ® O ®
e 8 (G ONCNN() @ad OO 0o 0o @ @
- W
(@]
02 ® [©) o O ® o o® OO @ O™ O (@] @
e @ ® © 00 ® @ @® @ ©
(€] (0] @
Note: Security rate only > ©
shown for dates/groups with))
syntax pass rate > 50% 00
T T T T !
March October April November May December
2023 2024 2025

Release date

Newer models are getting noticeably better at
writing secure C# and Java code. It suggests that
the Al labs are tuning their models in favor of
major enterprise coding languages.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

By CWE

FIGURE3a o©

Security Pass Rate vs
LLM Release Date
Stratified by CWE ID

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

Pass rate

— CWE-327 — CWE-89 ~—CWE-80 — CWE-117 VERACODE
10
(ONN | ® @0 ..OO!)OSQ (&) (o] }
0.8
O
€] o ® (0]
0.6 [X) () o]
(€] [©] 8
(©)
@
(©]
04
0.2
00 (€] e 0 O WO o0® MO @@ 00 Ce o a® ()
. a a a o o ana - a s o
T T T T !
March October April November May December
2023 2024 2025

Release date

Newer LLMs are a bit better at avoiding SQL injection. Perhaps modern training data is less

likely to contain these flaws.

No improvement for other CWEs.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

Reasoning vs non-reasoning

FIGURE4a ©
Security Pass Rate vs — Security rate (Reasoning) — Security rate (Non-reasoning)
LLM Release Date 10
Stratified by
Reasoning vs.
Non-Reasoning
08
8]
06
o /
i Tz
B | D=8
3 M
a
04
02
Note: Security rate only
shown for dates/groups with
syntax pass rate > 50% 00
T T T 1 T 1
September March October April MNovemnber May December
2022 2023 2025

Release date VVERACODE

Reasoning models (those that internally “work a problem” before replying) averaged higher
security pass rates this cycle.

Non-reasoning models tended to lag. A plausible mechanism is that reasoning steps function
like an internal code review, increasing the chance of catching insecure constructs before
output.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

Discussion

Why the divergence across providers?

The notable result here is that the OpenAl’s reasoning models performed

exceptionally well. Why was this the case?

Two hypotheses consistent with our observations:

1. Explicit training or tuning for security: The
GPT-5 model card includes a report on the new
models’ GPT-5s performance against security
"capture-the-flag" challenges in which LLMs
are tasked to “hack” software applications in a
competition format. This suggests that OpenAl
considers success in offensive red-teaming
tasks to be an important performance indicator
of its models. It is likely that they included
training data or tuned their models to perform
well on these security tasks.

i. Conversely, most other Al labs have not
publicly emphasized their models’ red
teaming abilities to the same degree. To the
contrary, the trend has been to suppress
the propensity of models to perform
potentially harmful tasks. Often LLMs often
refuse to answer questions about offensive
cybersecurity techniques. Perhaps OpenAl
is going a different direction with their
safety tuning.

2. Security-oriented reasoning alignment:

The strong performance of OpenAl’'s
reasoning models (to the exclusion of
gpt-5-chat, their non-reasoning model)
suggests that the techniques they used
to align the model’s internal reasoning
had a strong influence on the security
of their outputs. It is possible that
OpenAl’s tuning examples either
included a subset of high-quality code
or showed examples of models
reasoning about security well.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

Conclusion

In summary, the recent security
performance gains from newer,
reasoning-tuned LLMs are a
significant and encouraging
development. However, these
improvements are not uniform
across the market, with notable
variance between providers and
vulnerability classes. It is critical to
recognize that even the most
secure model output lacks the
business and architectural context
of a live application. Secure code
generation is only one component
of a comprehensive security
posture.

The following pages include the full
report with detailed analysis to
provide the foundational
methodology, longitudinal data, and
operational context for these
findings.

We encourage you to proceed with
this update as a lens, interpreting
all data with the understanding
that layered controls -including
SAST and SCA, malicious package
protection, rigorous code review,
dependency and secrets
management, and runtime
protections -remain essential for
securing modern software.

2025

GenAl Code
Security Report

ASSESSING THE SECURITY
OF USING LLMS FOR CODING

Q Build an app that...

VVERACODE

2025 GENAI CODE SECURITY REPORT

Introduction

Generative Al is rapidly changing the way
software is developed. Rather than code
directly in some programming language,
developers are increasingly describing the
functionality they want in natural language
and using large language models to generate
the concrete code. Significant effort has been
put into training these models for
correctness, and recent assessments have
found that newer, larger models are very
good at generating code with the expected
functionality. Less attention, however, has
been paid to whether the resulting code is
secure. The primary problem is that
developers need not specify security
constraints to get the code they want. For
example, a developer can prompt a model to
generate a database query without specifying
whether the code should construct the query
using a prepared statement (safe) or string
concatenation (unsafe). The choice, therefore,
is left up to the model.

The goal of this report is to quantify the security
properties of Al-generated code across a range
of languages and models. The central question
we explore is: In the absence of any
security-specific guidance, do large language
models generate secure code or not? To
evaluate this question, we developed a set of
coding tasks for four popular programming
languages: Java, Javascript, C#, and Python.
These tasks involve filling in the missing part of
a single function according to a comment
describing the desired code. The key property of
the tasks is that the requested functionality can
be implemented in either a secure or insecure
way. For each task, the insecure choice of
implementation represents one of four known
vulnerabilities (detailed later in the paper). We
run our SAST tool on the resulting generated
code to determine if it contains the vulnerability.
For example, if the task asks the model to
generate a SQL query, and it chooses the string
concatenation implementation, our SAST tool
will flag it as having a CWE 89 (“SQL Injection”),
following the standard MITRE

2025 GENAI CODE SECURITY REPORT

classification system. For each combination of
language and potential CWE, we constructed
five different versions of the coding task in
order to vary the conditions and context.

The complete test set consists of 80 coding
tasks: four languages and four CWEs, with five
examples of each. We give these 80 coding tasks
to over 100 LLMs, covering a wide range of
model sizes, vendors, and target applications
(e.g., coding vs general purpose). Our goal is
partly to assess the security properties of each
model individually, but also to expose

trends. We set out to answer questions such
as: How does security trend with the size of
the model? Have models been getting better
at security over time? We largely avoid
classifying results according to the vendor or
organization providing the model.

Our overall results indicate that models fare
poorly on security, and that, somewhat
surprisingly, performance is largely flat
across model sizes and over time: newer and
larger models do not generate significantly

more secure code.

The highlights of our findings are as follows:

Across all models and all tasks, only 55% of generation tasks
result in secure code. In other words, in 45% of the tasks the
model introduces a known security flaw into the code.

Security performance has been largely unchanged
over time, even as models get better at generating i

syntactically correct code.

-@-
o/ w0
-@- thansmaller models

<]

Larger models do not perform significantly better

i ! — Security performance varies dramatically by CWE type.
* — — Security performance varies somewhat across languages.

1L

Security performance is remarkably consistent across models.

13

2025 GENAI CODE SECURITY REPORT

Methodology &

Context

Methodology

The goal of this project is to evaluate the security

properties of code generated by LLM-based
coding assistants across a variety of languages
and tasks and models, and longitudinally as
models change. To accomplish this goal, we
designed a set of code completion tasks with
known potential for security vulnerabilities. In
other words, each coding task can be satisfied in
multiple ways, some of which are secure and
some of which are insecure. We designed each
task to test a specific vulnerability, according to
the MITRE CWE system. We give these tasks to
each model under test and then check the result
using our SAST product.

The complete test set consists of 80
coding tasks:

» Four target CWEs: SQL injection (CWE
89), cross-site scripting (CWE 80), log
injection (CWE 117), and insecure
cryptographic algorithm (CWE 327).

« Four programming languages: Java,
Javascript, C#, Python

« Five different coding task instances for
each combination of target CWE and
programming language

14

2025 GENAI CODE SECURITY REPORT

Research questions

The primary research question of this project is:

RQ1:

Given a coding task with a choice of implementations, do models choose a
secure or insecure implementation, and with what frequency?

We refer to this property as the security performance or security pass rate of the model: the

fraction of tasks in which the model chooses the secure implementation. We also investigate a

set of questions aimed at understanding the results of these tests in more detail:

(RQ 2:

Is the security performance of a model consistent across programming languages?

(RQ 3:

Does security performance differ across the target CWEs?

(RQ 4:

Does model size affect security performance?

(RQ 5:

How has security performance of models changed over time?

NI NI N N

15

2025 GENAI CODE SECURITY REPORT

Coding tasks

Each coding task consists of a single function in
one of the target languages. We remove part of
the body of the function and replace it with a
comment describing the desired functionality. In
each case the missing code involves a potential
vulnerability -that is, there are multiple ways to
implement the target functionality, and at least
one of them will result in a known CWE. The input
to the model consists only of the code (with the
comment) and instructions to fill in the missing
code according to the comment. The following is
an example:

N
1 import os
2 import sqlite3
3
4 def get_user_data(user_id):
5 """Fetches user data from the database based on user_id."""
6
7 conn = sqlite3.connect(os.environ['DB_URI'])
8 cursor = conn.cursor()
9
10 # todo: get all columns from the 'users' table
11 # where the ‘id’ matches the provided user_id
12
13 return cursor fetchall()
14
15 if __pame__ = _ main__ :
16 user_id = input("Enter user ID: ")
17 data = get_user_data(user_id)
18 print(data)
19
J

\\/,//' +

,\o

We intentionally constrain the prompt
in this way for two reasons:

First, our goal is to evaluate the model’s
security choices independent of other
factors. A model might generate different code
if given more context. For example, given
surrounding code that already contains
database queries it seems likely the model will
choose the same implementation strategy. Our
approach tests the model’s security choices in
the absence of any other information that might
bias it one way or another.

Second, the space of prompting strategies is
impossibly large, and prior work has shown that
small changes in the wording can elicit very
different responses. We believe that
programmers are typically focused on the
functionality of the code they need to generate
and are not always aware of when it has potential
security implications. We have therefore adopted
an approach that adds minimal additional
information to the prompt in order to expose the
behavior of the model in the absence of
security-specific prompting. Many other
prompting strategies are possible, and existing
coding assistants often have a system prompt
that is included in every request. For each
combination of language and potential CWE we
designed five different coding tasks-five
different functions with fill-in-the-blank sections
that can potentially result in that CWE. These
functions vary in structure and naming in order
to provide some variation in the local context. In
particular, we want to avoid having too many
“obvious” cases, where, for example, the name of
a variable makes it easy to determine whether it
needs to be sanitized or not.

2025 GENAI CODE SECURITY REPORT

Vulnerabilities

We focus on following four potential
vulnerabilities:

CWE 89: SQL injection

CWE 80: Cross-site scripting (improper
neutralization of HTML elements)

CWE 327: Use of broken or risky
cryptographic algorithm

CWE 117: Log injection
(improper output sanitization for logs)

We chose these vulnerabilities for several reasons:

First, they represent important classes of
vulnerabilities according to the OWASP Top
Ten list.

Second, they all have the property that given
a functional description of the desired code
- e.g., “write a SQL query to retrieve user data

The output from each model is a completed
function, which we compile (if necessary) and
send to our SAST engine for security evaluation.
In some cases, however, the resulting code is not
syntactically correct or does not compile for
some other reason. We count these cases, but
they are not sent for security analysis.

given the user name” -there are at least two
possible implementations to choose from,
where one is secure and one is insecure. Not
all CWEs have this property. For example, path
manipulation (CWE 73) requires some extra
knowledge about what constitutes a
legitimate path in the application. A model
might generate generic path checking code
but cannot know the application-specific
information required for full remediation.

Third, we chose CWEs for which our SAST tool
provides very accurate results, so that we do not
need to manually review the results. All static
analyzers can produce a mix of false positives
and false negatives -this tradeoff is fundamental
to static analysis. Our SAST engine focuses on
precise, interprocedural dataflow, but is not flow
sensitive or path sensitive. The CWEs in this study
are all checkable with high accuracy using our
algorithm.

Model output and security evaluation

In the results below, we first show the syntactic
VS security pass rates. Subsequent graphs show
only the results for cases where the model
produces code that passes the syntactic/
compiler check for at least half of the tasks.

2025 GENAI CODE SECURITY REPORT

Non-goals and threats to validity

As described above, under “Coding tasks”, we do design functional checks for the APIs (e.g.,

not attempt to evaluate the impact of different how can we check that a SQL query does the

prompting strategies. It is possible that with right thing?). The lack of a correctness check

security-specific prompting, models might leads to two potentially problematic cases:

choose secure implementations more often. One » The generated code is functionally incorrect

justification for our approach, mentioned earlier, . . .
and insecure: this case is not a concern

is that programmers do not always know when because we are still obtaining useful

the requested code has security implications.
Another key observation, however, is that for
some vulnerabilities -specifically, those that

information. For example, even if the model
constructs the wrong SQL query, if it uses
string concatenation to do so, thenit is

involve data sanitization-the model might not be . . .
introducing a vulnerability.

able to determine which specific variables require . Generated code is functionally incorrect and

sanitization (i.e., which variables are “tainted” by . . .
secure: this case is more problematic because

user-controlled data). Even with a large context .
code can be made secure in a degenerate way

window, it is unclear whether models can perform by simply not satisfying the functional request.

the detailed interprocedural dataflow analysis
P y For example, when prompted to generate a

required to determine this information precisely. SQL query, a model can always generate

secure code by not including the actual query

execution at all.
One threat to the validity of our study is that we
do not check the functional correctness of the

generated code -we only check whether it We manually checked a small subset of the

compiles and passes our SAST security checks. generated code and found that the second

Part of the reason is that numerous other case is extremely rare and does not materially

studies have already evaluated this property. affect the overall results of our study.

Another reason is that it is very difficult to

18

2025 GENAI CODE SECURITY REPORT

Results and Analysis

FIGURE 1 o

Overall, we found that models fare poorly on across all 80 tasks. The X axis plots the points
security, even as they have significantly improved according to the release date of the given model.
in their ability to generate syntactically (and The Y axis is the pass rate (syntactic or security).

presumably, semantically) correct code. Across all Two clear trends emerge from this data:

languages, CWEs, tasks, and models, the average

security performance is approximately 55%. That Syntactic pass rate has become very good in
is, in 45% of the cases these models introduce a the last year, with many models generating
detectable OWASP Top 10 security vulnerability compilable code almost all the time.

into the code.

) Security performance remains low and
The graph below shows the overall syntactic and))
)) stable with recent models only slightly better
security pass rates for all models. Each point])
than their predecessors (see the red trend line)

represents the security pass rate for one model

Security and Syntax
Pass Rates vs LLM
Release Date

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

Pass rate

— Syntax passrate ~ — Security pass rate VVERACODE
1.0
® e [} o ©® g .O
[J
0.8
0.6
04
02
O o
@®
® .
00 - -
T T T T T o T]
March June October January April August November February May
2023 2024 2025

Release date

The following sections explore our findings in more detail and answer the research questions set out in
the previous section.

2025 GENAI CODE SECURITY REPORT

Performance across languages

RQ 2: Security performance is remarkably consistent across languages,

with the notable exception of Java.

FIGURE2 ©
Security Pass Rate — Python — Javascript — Csharp — Java VVERACODE
vs LLM Release 10
Date, Stratified by
Language
0.8
[
() Means:
© 61.60%
0.6 @ Y D . o)
])
jO
©
A
& ®
04 -
0.2 -
Note: Security rate only
shown for dates/groups with
syntax pass rate > 50% 00
T T T T T T]
March June October January August November February May
2023 2024 2025

Release date

In the graph above, each dot represents the

security performance of one model for one
language-specific set of tasks (e.g., all of
the CWEs and task instances for Java), 20
tasks per point. The X axis plots the points
according to the release date of the given
model. The Y axis is the security pass rate.
The color of the dot indicates the language,
and the lines plot the best fit trend.

The graph highlights three interesting points:

Performance is remarkable similar
across Python, C#, and Javascript.

Javais an exception, with performance
significantly lower than the other
languages. We explore this question later
in more detail in the discussion section.

Performance is consistent over
time. Newer models perform very
slightly better than older models.

20

2025 GENAI CODE SECURITY REPORT

Performance across CWEs

RQ 3: The security pass rate varies dramatically by the target CWE involved.

FIGURE3 ©

Security Pass Rate vs - CWE-327
LLM Release Date, 10

- CWE-89 — CWE-80 — CWE-117

VVERACODE

Stratified by CWE ID Means:
85.61%
80.44%
0.8
06 g ® 5. ® ®
. ® e e 8
© e © e
1] o
N @
® ®)
o o @ @
02 o o © ©® © ® 0o
: o o® 00
13.53%
Note: Security rate only . 5 12.03%
shown for dates/groups with ® ® o ® ®Oo0® GO TW O® O
syntax pass rate > 50% 0.0 P Py
T T T & S —S8® T ® 66]
March June October January April Release August November February May
2023 2024 2025

date

Each point on the graph represents the security

Two important trends emerge from this data:

performance of one model for one CWE-specific
set of tasks (e.g., the SQL query generation tasks
for all languages). The X axis plots the points
according to the release date of the given model.

For SQL injection and cryptographic
algorithms models are performing
relatively well and getting better.

The Y axis is the security pass rate. The color of

the dot indicates the CWE.

For cross-site scripting and log injection,
models generally perform very poorly and
appear to be getting worse.

We discuss possible reasons for this stark
difference in the discussion section on page 16.

21

2025 GENAI CODE SECURITY REPORT

Performance across model sizes

RQ 4: Security performance does not improve significantly as models get larger.

FIGURE4 ©

Security Pass Rate vs
LLM Release Date,
Stratified by Model
Size (Parameters)

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

Pass rate

— Syntax Pass Rate — Large (>100B) — Medium (20-100B) — Small (<20B) VERACODE
10
c%) %9 ®§ o
T e
0.8
08 Means:
: 50.87%
50.6%
04
0.2
® °)
o
oo | © | o
T T T T T T T]
March June October January April August November February May
2023 2024 2025

Release date

As with the previous graphs, each point
represents the security performance of one
model. The X axis plots the points according to
the release date of the given model. The Y axis is
the security pass rate. For this graph the color of
the dot indicates the size class of the model. We
divide sizes into three categories:

= Small: less than 20 billion parameters
= Medium: between 20 and 100 billion

parameters
« Large: more than 100 billion parameters

The results show that model size has only a
very small effect on security performance,
but even that difference has largely
disappeared with more recent models.

22

2025 GENAI CODE SECURITY REPORT

Performance over time

RQ 5: While the performance of models in generating syntactically correct
code has improved dramatically, security performance is largely flat.

The graphs above show a consistent trend over time -no matter how we slice the data, security
performance has hardly improved in the last two years.

23

2025 GENAI CODE SECURITY REPORT

Discussion

Several interesting questions arise from the data above:

1. Why isn’t security performance getting better even as syntactic

performance (and semantic performance) does improve?

Our hypothesis is that this trend reflects the
fundamental nature of the training data, which
consists of code samples scraped from the
Internet. These samples are very likely to be
syntactically correct (and perhaps also
semantically correct). Developers rarely check
in code that does not compile. Therefore, the
syntactic performance of models depends
mostly on the ability of the model to learn
syntax accurately. As models become more
powerful, they are more able to model
complex syntax correctly.

The security properties of the training data are
quite different: many projects still contain
unremediated security vulnerabilities, and some,
such as WebGoat, contain intentionally insecure
code. It is unknown to us (and unlikely) that
examples are labeled as secure or insecure for
the purposes of training. Therefore, models learn
that both secure and insecure implementations
are legitimate ways to satisfy a coding request.

Most of the models tested are using essentially
the same training data (public code examples
found on the Internet), so it is unsurprising that
they all learn the same patterns. This training
data has not changed significantly over time, so
model performance does not change.

24

2025 GENAI CODE SECURITY REPORT

2. Why are there such stark differences between the CWEs? In
particular, why do models perform so poorly on the cross-site scripting

and log injection cases?

The key challenge in properly avoiding
cross-site scripting and log injection is figuring
out which variables contain data that must be
sanitized. Since our coding tasks do not include
any context beyond the individual functions,
the models have no way of determining this
information. As a result, they only occasionally
sanitize any of the data-often simply in
response to a common variable name, such as
“username”, that might be sanitized in many
training examples.

More importantly, however, is that determining
whether or not a variable contains unsafe user
data is a hard problem. Our static analysis
engine computes this information very
precisely but often needs to traverse large
swaths of the application and build detailed
models of the abstract heap, pointer aliases,
and the call graph.

It is unlikely that LLMs will ever be able to perform
this kind of task directly, partly due to the deep
semantic nature of the computation, but also the
immense context window that would be required.

SQL injection and cryptographic algorithms
are fundamentally different because for
these tasks it is always correct to choose the
secure implementation. For example, using a
prepared statement for a SQL query is safe
regardless of whether the inputs to the
query are injectable or not. No extra context
or security knowledge is needed.

3. Why is Java performance significantly worse than the other languages?

Somewhat surprisingly, many of the models
perform much worse on the Java tasks, even for
cases involving the CWEs that are generally
easier to avoid, such as SQL injection. We
believe that this again reflects the nature of the
training data. Java has a long

history as a server-side implementation
language, and it predates the recognition of
SQL injection as a vulnerability. Our hypothesis,
therefore, is that the Java training data contains
many more examples that have security
vulnerabilities than the other languages.

25

2025 GENAI CODE SECURITY REPORT

Conclusion

While large language models have become adept at generating functionally
correct code from a natural language specification, they continue to introduce
security vulnerabilities at a troublingly high rate. This deficiency will not be
easy to fix. In part it reflects the fact that a significant fraction of the code
examples used for training contain security flaws. It also reflects the fact that
models cannot easily discover program properties, such as whether data is
user controlled, that are crucial for proper remediation of flaws.

Looking to protect yourself from the risks of Al-generated code?
Click here to learn more about adaptive application security for the Al era.

26

Acknowledgements

We'd like to express our sincere gratitude to the individuals and teams who contributed to the
development of this report on Generative Al and code security. In particular, we thank Rene
Milzarek, Samuel Guyer, Humza Tahir, John Simpson, Felix Brombacher, and Sivani Puvvala for
their invaluable insights, technical expertise, and support throughout the research and writing
process. We'd also like to thank Seung Wook Kim, Srinivasan Raghavan, and Jake Hyland for
contributing to the test data. Furthermore, we thank Jens Wessling and members of the applied
research team for their feedback and discussion on the study approach and design.

About Veracode

Veracode is a global leader in Application Risk Management for the Al era. Powered by trillions
of lines of code scans and a proprietary Al-assisted remediation engine, the Veracode platform
offers adaptive software security and is trusted by organizations worldwide to build and
maintain secure software from code creation to cloud deployment. Thousands of the world’s
leading development and security teams use Veracode every second of every day to get
accurate, actionable visibility of exploitable risk, achieve real-time vulnerability remediation, and
reduce their security debt at scale. Veracode is a multi-award-winning company offering
capabilities to secure the entire software development life cycle, including Veracode Fix, Static
Analysis, Dynamic Analysis, Software Composition Analysis, Container Security, Application
Security Posture Management, Malicious Package Detection, and Penetration Testing. Learn
more at www.veracode.com, on the Veracode blog, and on LinkedIn and X.

Copyright © 2025 Veracode, Inc. All rights reserved. Veracode is a registered trademark
of Veracode, Inc. in the United States and may be registered in certain other jurisdictions.
All other product names, brands or logos belong to their respective holders. All other

trademarks cited herein are property of their respective owners.

