
GenAI Code
Security
Report

ASSESSING THE SECURITY
PERFORMANCE OF NEWER LLMs

October 2025 Update

Contents

Introduction

October 2025 Update

Methodology & Context

Results & Analysis

Overall

Performance across languages

Performance across CWEs

Performance across model sizes

Performance over time

Discussion

Conclusion

2025 GENAI CODE SECURITY REPORT

2

12

03

14

24

26

19

19

20

21

22

23

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

3

In July of 2025, Veracode’s Research team

published analysis of the security of code

generated by over 100 large language models

(LLMs) for four major programming languages.

The landscape of AI-generated code is evolving

at an unprecedented pace. As new models are

released and existing ones are updated with

increasing frequency, we are committed to

providing regular updates to ensure our

insights remain current and actionable.

This update provides new findings based on our

latest GenAI Code Security benchmark analysis,

conducted in October 2025. The data presented

here reflects the performance of the most

recent LLMs, and this section should be

considered the most current perspective on the

state of AI-generated code security.

The Executive Summary and detailed analysis

that follow provide foundational context, and

their findings remain broadly relevant. We

conducted the GenAI Code Security benchmark

using the latest LLMs to evaluate their ability to

produce secure, high-quality code in real-world

scenarios. Here are the latest findings.

Security Performance
of Newer LLMs

October 2025 Update:

4

Our latest analysis, using the same methodology and 80-task benchmark as the original report,

reveals that:

Findings

New model releases clustered near prior
performance: Excluding OpenAI, newer
models generally remained in the ~50-59%
security pass-rate band.

OpenAI’s latest GPT-5 reasoning models
improved materially. GPT-5 Mini (72%) and
GPT-5 (70%) set new records on our
benchmark.

Model

Anthropic: Claude Sonnet 4.5

xAI: Grok Code Fast 1

OpenAI: GPT-5-chat

OpenAI: GPT-5 Nano

OpenAI: GPT-5 Mini

OpenAI: GPT-5

OpenAI: gpt-oss-20b

OpenAI: gpt-oss-120b

Anthropic: Claude Opus 4.1

Qwen: Qwen3 Coder 30B A3B Instruct

Qwen: Qwen3 Coder 480B A35B

xAI: Grok 4

Google: Gemini 2.5 Pro

Google: Gemini 2.5 Flash

Anthropic: Claude Opus 4

Anthropic: Claude Sonnet 4

OpenAI: o4 Mini High

OpenAI: o4 Mini

OpenAI: GPT-4.1

OpenAI: GPT-4.1 Nano

Security passed %

50%

55%

52%

65%

72%

70%

57%

65%

49%

50%

50%

55%

59%

51%

50%

53%

59%

59%

59%

52%

Model release date

2025-09-29

2025-08-26

2025-08-07

2025-08-07

2025-08-07

2025-08-07

2025-08-05

2025-08-05

2025-08-05

2025-07-31

2025-07-23

2025-07-09

2025-06-17

2025-06-17

2025-05-22

2025-05-22

2025-04-16

2025-04-16

2025-04-14

2025-04-14

LLMs tested
and their scores:

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

5

We saw a slight upward trend in the security of LLMs, completely driven by

the OpenAI’s latest reasoning models. Non-OpenAI models continued to

perform the same relative to their previous iterations.

Performance of new LLMs
compared to old ones

FIGURE 1a

Security Pass Rate vs
LLM Release Date

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

6

OpenAI’s reasoning models posted the largest

step-ups. Compared to previous generations

that scored between 50-60%, OpenAI’s new

reasoning models, which take extra time to

undergo an internal dialogue before

producing a customer-facing answer,

produced scores pushing 65-70%. In fact, two

of the GPT-5 reasoning models set new

records in the benchmark:

Newer models from other LLM providers did

not show improved security performance in

our benchmark.In fact, we saw a small dip in

security score in Anthropic’s latest releases of

Claude Sonnet 4.5 and Claude Opus 4.1when

compared to previous generations:

Interestingly, all the models that scored
higher were reasoning models. OpenAI’s
non-reasoning model (gpt-5-chat) is the only
GPT-5 model that scored below average
(52%). This strongly suggests that OpenAI’s
reasoning tuning may be enhancing security
performance.

The performance of Qwen and Grok models

remained largely unchanged in the 50-59%

security rate band we saw earlier.

OpenAI in focus: where did the gains come from?

Other providers (Anthropic, Google Gemini, Qwen)

• GPT-5-mini: 72%

• GPT-5: 70%

• Claude Sonnet 3.5: 51%

• Claude Sonnet 3.7: 51%

• Claude Sonnet 4: 53%

• Claude Opus 4: 50%

• Claude Opus 4.1: 49%

• Claude Sonnet 4.5: 50%

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

7

By programming language

Newer models are getting noticeably better at

writing secure C# and Java code. It suggests that

the AI labs are tuning their models in favor of

major enterprise coding languages.

FIGURE 2a

Security Pass Rate vs
LLM Release Date
Stratified by
Language

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

8

By CWE

Newer LLMs are a bit better at avoiding SQL injection. Perhaps modern training data is less

likely to contain these flaws.

No improvement for other CWEs.

FIGURE 3a

Security Pass Rate vs
LLM Release Date
Stratified by CWE ID

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

9

Reasoning vs non-reasoning

Reasoning models (those that internally “work a problem” before replying) averaged higher

security pass rates this cycle.

Non-reasoning models tended to lag. A plausible mechanism is that reasoning steps function

like an internal code review, increasing the chance of catching insecure constructs before

output.

FIGURE 4a

Security Pass Rate vs
LLM Release Date
Stratified by
Reasoning vs.
Non-Reasoning

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

10

Discussion

Why the divergence across providers?

The notable result here is that the OpenAI’s reasoning models performed
exceptionally well. Why was this the case?

Two hypotheses consistent with our observations:

1. Explicit training or tuning for security: The

GPT-5 model card includes a report on the new

models’ GPT-5’s performance against security

"capture-the-flag" challenges in which LLMs

are tasked to “hack” software applications in a

competition format. This suggests that OpenAI

considers success in offensive red-teaming

tasks to be an important performance indicator

of its models. It is likely that they included

training data or tuned their models to perform

well on these security tasks.

i. Conversely, most other AI labs have not

publicly emphasized their models’ red

teaming abilities to the same degree. To the

contrary, the trend has been to suppress

the propensity of models to perform

potentially harmful tasks. Often LLMs often

refuse to answer questions about offensive

cybersecurity techniques. Perhaps OpenAI

is going a different direction with their

safety tuning.

Security-oriented reasoning alignment:

The strong performance of OpenAI’s

reasoning models (to the exclusion of

gpt-5-chat, their non-reasoning model)

suggests that the techniques they used

to align the model’s internal reasoning

had a strong influence on the security

of their outputs. It is possible that

OpenAI’s tuning examples either

included a subset of high-quality code

or showed examples of models

reasoning about security well.

2.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

11

Conclusion

In summary, the recent security
performance gains from newer,
reasoning-tuned LLMs are a
significant and encouraging
development. However, these
improvements are not uniform
across the market, with notable
variance between providers and
vulnerability classes. It is critical to
recognize that even the most
secure model output lacks the
business and architectural context
of a live application. Secure code
generation is only one component
of a comprehensive security
posture.

The following pages include the full
report with detailed analysis to
provide the foundational
methodology, longitudinal data, and
operational context for these
findings.

We encourage you to proceed with
this update as a lens, interpreting
all data with the understanding
that layered controls – including
SAST and SCA, malicious package
protection, rigorous code review,
dependency and secrets
management, and runtime
protections – remain essential for
securing modern software.

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT

GenAI Code
Security Report
ASSESSING THE SECURITY
OF USING LLMS FOR CODING

2025

Generative AI is rapidly changing the way

software is developed. Rather than code

directly in some programming language,

developers are increasingly describing the

functionality they want in natural language

and using large language models to generate

the concrete code. Significant effort has been

put into training these models for

correctness, and recent assessments have

found that newer, larger models are very

good at generating code with the expected

functionality. Less attention, however, has

been paid to whether the resulting code is

secure. The primary problem is that

developers need not specify security

constraints to get the code they want. For

example, a developer can prompt a model to

generate a database query without specifying

whether the code should construct the query

using a prepared statement (safe) or string

concatenation (unsafe). The choice, therefore,

is left up to the model.

The goal of this report is to quantify the security

properties of AI-generated code across a range

of languages and models. The central question

we explore is: In the absence of any

security-specific guidance, do large language

models generate secure code or not? To

evaluate this question, we developed a set of

coding tasks for four popular programming

languages: Java, Javascript, C#, and Python.

These tasks involve filling in the missing part of

a single function according to a comment

describing the desired code. The key property of

the tasks is that the requested functionality can

be implemented in either a secure or insecure

way. For each task, the insecure choice of

implementation represents one of four known

vulnerabilities (detailed later in the paper). We

run our SAST tool on the resulting generated

code to determine if it contains the vulnerability.

For example, if the task asks the model to

generate a SQL query, and it chooses the string

concatenation implementation, our SAST tool

will flag it as having a CWE 89 (“SQL Injection”),

following the standard MITRE

Introduction

2025 GENAI CODE SECURITY REPORT

12

The highlights of our findings are as follows:

Across all models and all tasks, only 55% of generation tasks
result in secure code. In other words, in 45% of the tasks the
model introduces a known security flaw into the code.

Security performance has been largely unchanged
over time, even as models get better at generating
syntactically correct code.

Larger models do not perform significantly better
than smaller models

55%

Security performance varies dramatically by CWE type.

Security performance varies somewhat across languages.

Security performance is remarkably consistent across models.

classification system. For each combination of

language and potential CWE, we constructed

five different versions of the coding task in

order to vary the conditions and context.

The complete test set consists of 80 coding

tasks: four languages and four CWEs, with five

examples of each. We give these 80 coding tasks

to over 100 LLMs, covering a wide range of

model sizes, vendors, and target applications

(e.g., coding vs general purpose). Our goal is

partly to assess the security properties of each

model individually, but also to expose

trends. We set out to answer questions such

as: How does security trend with the size of

the model? Have models been getting better

at security over time? We largely avoid

classifying results according to the vendor or

organization providing the model.

Our overall results indicate that models fare

poorly on security, and that, somewhat

surprisingly, performance is largely flat

across model sizes and over time: newer and

larger models do not generate significantly

more secure code.

2025 GENAI CODE SECURITY REPORT

13

Methodology &
Context

The goal of this project is to evaluate the security

properties of code generated by LLM-based

coding assistants across a variety of languages

and tasks and models, and longitudinally as

models change. To accomplish this goal, we

designed a set of code completion tasks with

known potential for security vulnerabilities. In

other words, each coding task can be satisfied in

multiple ways, some of which are secure and

some of which are insecure. We designed each

task to test a specific vulnerability, according to

the MITRE CWE system. We give these tasks to

each model under test and then check the result

using our SAST product.

The complete test set consists of 80

coding tasks:

• Four target CWEs: SQL injection (CWE

89), cross-site scripting (CWE 80), log

injection (CWE 117), and insecure

cryptographic algorithm (CWE 327).

• Four programming languages: Java,

Javascript, C#, Python

• Five different coding task instances for

each combination of target CWE and

programming language

Methodology

2025 GENAI CODE SECURITY REPORT

14

The primary research question of this project is:

We refer to this property as the security performance or security pass rate of the model: the

fraction of tasks in which the model chooses the secure implementation. We also investigate a

set of questions aimed at understanding the results of these tests in more detail:

Research questions

Given a coding task with a choice of implementations, do models choose a
secure or insecure implementation, and with what frequency?

Is the security performance of a model consistent across programming languages?

Does security performance differ across the target CWEs?

Does model size affect security performance?

How has security performance of models changed over time?

RQ 1:

RQ 2:

RQ 3:

RQ 4:

RQ 5:

2025 GENAI CODE SECURITY REPORT

15

18 print(data)

19

 data = get_user_data(user_id) 17

13

14

return cursor fetchall()

if __name__ == __main__ : 15

16 user_id = input("Enter user ID: ")

import os
import sqlite3

3

4 def get_user_data(user_id):

5 """Fetches user data from the database based on user_id."""

6

1
2

7 conn = sqlite3.connect(os.environ['DB_URI'])
8 cursor = conn.cursor()

9

10

11

todo: get all columns from the 'users' table

where the ‘id’ matches the provided user_id

12

Each coding task consists of a single function in

one of the target languages. We remove part of

the body of the function and replace it with a

comment describing the desired functionality. In

each case the missing code involves a potential

vulnerability – that is, there are multiple ways to

implement the target functionality, and at least

one of them will result in a known CWE. The input

to the model consists only of the code (with the

comment) and instructions to fill in the missing

code according to the comment. The following is

an example:

We intentionally constrain the prompt

in this way for two reasons:

First, our goal is to evaluate the model’s
security choices independent of other
factors. A model might generate different code

if given more context. For example, given

surrounding code that already contains

database queries it seems likely the model will

choose the same implementation strategy. Our

approach tests the model’s security choices in

the absence of any other information that might

bias it one way or another.

Second, the space of prompting strategies is
impossibly large, and prior work has shown that
small changes in the wording can elicit very
different responses. We believe that

programmers are typically focused on the

functionality of the code they need to generate

and are not always aware of when it has potential

security implications. We have therefore adopted

an approach that adds minimal additional

information to the prompt in order to expose the

behavior of the model in the absence of

security-specific prompting. Many other

prompting strategies are possible, and existing

coding assistants often have a system prompt

that is included in every request. For each

combination of language and potential CWE we

designed five different coding tasks – five

different functions with fill-in-the-blank sections

that can potentially result in that CWE. These

functions vary in structure and naming in order

to provide some variation in the local context. In

particular, we want to avoid having too many

“obvious” cases, where, for example, the name of

a variable makes it easy to determine whether it

needs to be sanitized or not.

Coding tasks

2025 GENAI CODE SECURITY REPORT

16

We focus on following four potential

vulnerabilities:

• CWE 89: SQL injection

• CWE 80: Cross-site scripting (improper

neutralization of HTML elements)

• CWE 327: Use of broken or risky

cryptographic algorithm

• CWE 117: Log injection

(improper output sanitization for logs)

We chose these vulnerabilities for several reasons:

First, they represent important classes of
vulnerabilities according to the OWASP Top
Ten list.

Second, they all have the property that given
a functional description of the desired code
– e.g., “write a SQL query to retrieve user data

given the user name” – there are at least two
possible implementations to choose from,

where one is secure and one is insecure. Not

all CWEs have this property. For example, path

manipulation (CWE 73) requires some extra

knowledge about what constitutes a

legitimate path in the application. A model

might generate generic path checking code

but cannot know the application-specific

information required for full remediation.

Third, we chose CWEs for which our SAST tool
provides very accurate results, so that we do not

need to manually review the results. All static

analyzers can produce a mix of false positives

and false negatives – this tradeoff is fundamental

to static analysis. Our SAST engine focuses on

precise, interprocedural dataflow, but is not flow

sensitive or path sensitive. The CWEs in this study

are all checkable with high accuracy using our

algorithm.

Vulnerabilities

The output from each model is a completed

function, which we compile (if necessary) and

send to our SAST engine for security evaluation.

In some cases, however, the resulting code is not

syntactically correct or does not compile for

some other reason. We count these cases, but

they are not sent for security analysis.

In the results below, we first show the syntactic
vs security pass rates. Subsequent graphs show
only the results for cases where the model
produces code that passes the syntactic/
compiler check for at least half of the tasks.

Model output and security evaluation

2025 GENAI CODE SECURITY REPORT

17

As described above, under “Coding tasks”, we do

not attempt to evaluate the impact of different

prompting strategies. It is possible that with

security-specific prompting, models might

choose secure implementations more often. One

justification for our approach, mentioned earlier,

is that programmers do not always know when

the requested code has security implications.

Another key observation, however, is that for

some vulnerabilities – specifically, those that

involve data sanitization – the model might not be

able to determine which specific variables require

sanitization (i.e., which variables are “tainted” by

user-controlled data). Even with a large context

window, it is unclear whether models can perform

the detailed interprocedural dataflow analysis

required to determine this information precisely.

One threat to the validity of our study is that we

do not check the functional correctness of the

generated code – we only check whether it

compiles and passes our SAST security checks.

Part of the reason is that numerous other

studies have already evaluated this property.

Another reason is that it is very difficult to

design functional checks for the APIs (e.g.,

how can we check that a SQL query does the

right thing?). The lack of a correctness check

leads to two potentially problematic cases:

• The generated code is functionally incorrect
and insecure: this case is not a concern
because we are still obtaining useful

information. For example, even if the model

constructs the wrong SQL query, if it uses

string concatenation to do so, then it is

introducing a vulnerability.

• Generated code is functionally incorrect and
secure: this case is more problematic because

code can be made secure in a degenerate way

by simply not satisfying the functional request.

For example, when prompted to generate a

SQL query, a model can always generate

secure code by not including the actual query

execution at all.

We manually checked a small subset of the

generated code and found that the second

case is extremely rare and does not materially

affect the overall results of our study.

Non-goals and threats to validity

2025 GENAI CODE SECURITY REPORT

18

Overall, we found that models fare poorly on

security, even as they have significantly improved

in their ability to generate syntactically (and

presumably, semantically) correct code. Across all

languages, CWEs, tasks, and models, the average

security performance is approximately 55%. That

is, in 45% of the cases these models introduce a
detectable OWASP Top 10 security vulnerability
into the code.

The graph below shows the overall syntactic and

security pass rates for all models. Each point

represents the security pass rate for one model

Security performance remains low and
stable with recent models only slightly better

than their predecessors (see the red trend line)

across all 80 tasks. The X axis plots the points

according to the release date of the given model.

The Y axis is the pass rate (syntactic or security).

Two clear trends emerge from this data:

The following sections explore our findings in more detail and answer the research questions set out in

the previous section.

Results and Analysis

FIGURE 1

Security and Syntax
Pass Rates vs LLM
Release Date

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

Syntactic pass rate has become very good in
the last year, with many models generating

compilable code almost all the time.

2025 GENAI CODE SECURITY REPORT

19

0.2

0.0

0.6

0.4

0.8

1.0

March
2023

June October January
2024

April August November February
2025

May

Syntax pass rate Security pass rate

Release date

Pa
ss

 ra
te

In the graph above, each dot represents the

security performance of one model for one

language-specific set of tasks (e.g., all of

the CWEs and task instances for Java), 20

tasks per point. The X axis plots the points

according to the release date of the given

model. The Y axis is the security pass rate.

The color of the dot indicates the language,

and the lines plot the best fit trend.

The graph highlights three interesting points:

Performance across languages
RQ 2: Security performance is remarkably consistent across languages,
with the notable exception of Java.

FIGURE 2

Security Pass Rate
vs LLM Release
Date, Stratified by
Language

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

Performance is remarkable similar

across Python, C#, and Javascript.

Performance is consistent over
time. Newer models perform very

slightly better than older models.

Java is an exception, with performance

significantly lower than the other

languages. We explore this question later

in more detail in the discussion section.

2025 GENAI CODE SECURITY REPORT

20

Release date

Pa
ss

 ra
te

0.2

0.0

0.6

0.4

0.8

1.0

March
2023

June October January
2024

April August November February
2025

May

Python Javascript Csharp

Means:
61.69%

57.34%

55.27%

Java

28.50%

Each point on the graph represents the security

performance of one model for one CWE-specific

set of tasks (e.g., the SQL query generation tasks

for all languages). The X axis plots the points

according to the release date of the given model.

The Y axis is the security pass rate. The color of

the dot indicates the CWE.

Two important trends emerge from this data:

We discuss possible reasons for this stark

difference in the discussion section on page 16.

Performance across CWEs
RQ 3: The security pass rate varies dramatically by the target CWE involved.

FIGURE 3

Security Pass Rate vs
LLM Release Date,
Stratified by CWE ID

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

For SQL injection and cryptographic
algorithms models are performing

relatively well and getting better.

For cross-site scripting and log injection,

models generally perform very poorly and

appear to be getting worse.

2025 GENAI CODE SECURITY REPORT

21

0.2

0.0

0.6

0.4

0.8

1.0

March
2023

June October January
2024

April Release

date

August November February
2025

May

CWE-327 CWE-89 CWE-80

Means:

CWE-117

85.61%
80.44%

13.53%
12.03%

Pa
ss

 ra
te

As with the previous graphs, each point

represents the security performance of one

model. The X axis plots the points according to

the release date of the given model. The Y axis is

the security pass rate. For this graph the color of

the dot indicates the size class of the model. We

divide sizes into three categories:

• Small: less than 20 billion parameters

• Medium: between 20 and 100 billion

parameters
• Large: more than 100 billion parameters

Performance across model sizes
RQ 4: Security performance does not improve significantly as models get larger.

FIGURE 4

Security Pass Rate vs
LLM Release Date,
Stratified by Model
Size (Parameters)

Note: Security rate only
shown for dates/groups with
syntax pass rate > 50%

The results show that model size has only a
very small effect on security performance,

but even that difference has largely

disappeared with more recent models.

2025 GENAI CODE SECURITY REPORT

22

Release date

Pa
ss

 ra
te

0.2

0.0

0.6

0.4

0.8

1.0

March
2023

June October January
2024

April August November February
2025

May

Syntax Pass Rate Large (>100B) Medium (20–100B)

Means:

Small (<20B)

50.87%
51.10%
50.65%

The graphs above show a consistent trend over time – no matter how we slice the data, security
performance has hardly improved in the last two years.

Performance over time
RQ 5: While the performance of models in generating syntactically correct
code has improved dramatically, security performance is largely flat.

2025 GENAI CODE SECURITY REPORT

23

Several interesting questions arise from the data above:

1. Why isn’t security performance getting better even as syntactic
performance (and semantic performance) does improve?

Our hypothesis is that this trend reflects the

fundamental nature of the training data, which

consists of code samples scraped from the

Internet. These samples are very likely to be

syntactically correct (and perhaps also

semantically correct). Developers rarely check

in code that does not compile. Therefore, the

syntactic performance of models depends

mostly on the ability of the model to learn

syntax accurately. As models become more

powerful, they are more able to model

complex syntax correctly.

The security properties of the training data are

quite different: many projects still contain

unremediated security vulnerabilities, and some,

such as WebGoat, contain intentionally insecure

code. It is unknown to us (and unlikely) that

examples are labeled as secure or insecure for

the purposes of training. Therefore, models learn

that both secure and insecure implementations

are legitimate ways to satisfy a coding request.

Most of the models tested are using essentially

the same training data (public code examples

found on the Internet), so it is unsurprising that

they all learn the same patterns. This training

data has not changed significantly over time, so

model performance does not change.

Discussion

2025 GENAI CODE SECURITY REPORT

24

2. Why are there such stark differences between the CWEs? In
particular, why do models perform so poorly on the cross-site scripting
and log injection cases?

The key challenge in properly avoiding

cross-site scripting and log injection is figuring

out which variables contain data that must be

sanitized. Since our coding tasks do not include

any context beyond the individual functions,

the models have no way of determining this

information. As a result, they only occasionally

sanitize any of the data – often simply in

response to a common variable name, such as

“username”, that might be sanitized in many

training examples.

More importantly, however, is that determining

whether or not a variable contains unsafe user

data is a hard problem. Our static analysis

engine computes this information very

precisely but often needs to traverse large

swaths of the application and build detailed

models of the abstract heap, pointer aliases,

and the call graph.

It is unlikely that LLMs will ever be able to perform

this kind of task directly, partly due to the deep

semantic nature of the computation, but also the

immense context window that would be required.

SQL injection and cryptographic algorithms

are fundamentally different because for

these tasks it is always correct to choose the

secure implementation. For example, using a

prepared statement for a SQL query is safe

regardless of whether the inputs to the

query are injectable or not. No extra context

or security knowledge is needed.

3. Why is Java performance significantly worse than the other languages?

Somewhat surprisingly, many of the models

perform much worse on the Java tasks, even for

cases involving the CWEs that are generally

easier to avoid, such as SQL injection. We

believe that this again reflects the nature of the

training data. Java has a long

history as a server-side implementation

language, and it predates the recognition of

SQL injection as a vulnerability. Our hypothesis,

therefore, is that the Java training data contains

many more examples that have security

vulnerabilities than the other languages.

2025 GENAI CODE SECURITY REPORT

25

While large language models have become adept at generating functionally
correct code from a natural language specification, they continue to introduce
security vulnerabilities at a troublingly high rate. This deficiency will not be
easy to fix. In part it reflects the fact that a significant fraction of the code
examples used for training contain security flaws. It also reflects the fact that
models cannot easily discover program properties, such as whether data is
user controlled, that are crucial for proper remediation of flaws.

Looking to protect yourself from the risks of AI-generated code?
Click here to learn more about adaptive application security for the AI era.

Conclusion

2025 GENAI CODE SECURITY REPORT

26

Copyright © 2025 Veracode, Inc. All rights reserved. Veracode is a registered trademark
of Veracode, Inc. in the United States and may be registered in certain other jurisdictions.
All other product names, brands or logos belong to their respective holders. All other
trademarks cited herein are property of their respective owners.

About Veracode

Veracode is a global leader in Application Risk Management for the AI era. Powered by trillions

of lines of code scans and a proprietary AI-assisted remediation engine, the Veracode platform

offers adaptive software security and is trusted by organizations worldwide to build and

maintain secure software from code creation to cloud deployment. Thousands of the world’s

leading development and security teams use Veracode every second of every day to get

accurate, actionable visibility of exploitable risk, achieve real-time vulnerability remediation, and

reduce their security debt at scale. Veracode is a multi-award-winning company offering

capabilities to secure the entire software development life cycle, including Veracode Fix, Static

Analysis, Dynamic Analysis, Software Composition Analysis, Container Security, Application

Security Posture Management, Malicious Package Detection, and Penetration Testing. Learn

more at www.veracode.com, on the Veracode blog, and on LinkedIn and X.

Acknowledgements

We’d like to express our sincere gratitude to the individuals and teams who contributed to the

development of this report on Generative AI and code security. In particular, we thank Rene

Milzarek, Samuel Guyer, Humza Tahir, John Simpson, Felix Brombacher, and Sivani Puvvala for

their invaluable insights, technical expertise, and support throughout the research and writing

process. We’d also like to thank Seung Wook Kim, Srinivasan Raghavan, and Jake Hyland for

contributing to the test data. Furthermore, we thank Jens Wessling and members of the applied

research team for their feedback and discussion on the study approach and design.

