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In July of 2025, Veracode’s Research team 

published analysis of the security of code 

generated by over 100 large language models 

(LLMs) for four major programming languages.  

The landscape of AI-generated code is evolving 

at an unprecedented pace. As new models are 

released and existing ones are updated with 

increasing frequency, we are committed to 

providing regular updates to ensure our 

insights remain current and actionable. 

This update provides new findings based on our 

latest GenAI Code Security benchmark analysis, 

conducted in October 2025. The data presented 

here reflects the performance of the most 

recent LLMs, and this section should be 

considered the most current perspective on the 

state of AI-generated code security. 

The Executive Summary and detailed analysis 

that follow provide foundational context, and 

their findings remain broadly relevant. We 

conducted the GenAI Code Security benchmark 

using the latest LLMs to evaluate their ability to 

produce secure, high-quality code in real-world 

scenarios. Here are the latest findings. 

Security Performance 
of Newer LLMs 

October 2025 Update:
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Our latest analysis, using the same methodology and 80-task benchmark as the original report, 

reveals that: 

Findings 

New model releases clustered near prior 
performance: Excluding OpenAI, newer 
models generally remained in the ~50-59% 
security pass-rate band.  

OpenAI’s latest GPT-5 reasoning models 
improved materially. GPT-5 Mini (72%) and 
GPT-5 (70%) set new records on our 
benchmark. 

Model 

Anthropic: Claude Sonnet 4.5 

xAI: Grok Code Fast 1 

OpenAI: GPT-5-chat 

OpenAI: GPT-5 Nano 

OpenAI: GPT-5 Mini 

OpenAI: GPT-5 

OpenAI: gpt-oss-20b 

OpenAI: gpt-oss-120b 

Anthropic: Claude Opus 4.1 

Qwen: Qwen3 Coder 30B A3B Instruct 

Qwen: Qwen3 Coder 480B A35B 

xAI: Grok 4 

Google: Gemini 2.5 Pro 

Google: Gemini 2.5 Flash 

Anthropic: Claude Opus 4 

Anthropic: Claude Sonnet 4 

OpenAI: o4 Mini High 

OpenAI: o4 Mini 

OpenAI: GPT-4.1 

OpenAI: GPT-4.1 Nano 

Security passed % 

50% 

55% 

52% 

65% 

72% 

70% 

57% 

65% 

49% 

50% 

50% 

55% 

59% 

51% 

50% 

53% 

59% 

59% 

59% 

52% 

Model release date 

2025-09-29 

2025-08-26 

2025-08-07 

2025-08-07 

2025-08-07 

2025-08-07 

2025-08-05 

2025-08-05 

2025-08-05 

2025-07-31 

2025-07-23 

2025-07-09 

2025-06-17 

2025-06-17 

2025-05-22 

2025-05-22 

2025-04-16 

2025-04-16 

2025-04-14 

2025-04-14 

LLMs tested 
and their scores: 
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We saw a slight upward trend in the security of LLMs, completely driven by 

the OpenAI’s latest reasoning models. Non-OpenAI models continued to 

perform the same relative to their previous iterations. 

Performance of new LLMs 
compared to old ones 

FIGURE 1a

Security Pass Rate vs 
LLM Release Date

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 
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OpenAI’s reasoning models posted the largest 

step-ups. Compared to previous generations 

that scored between 50-60%, OpenAI’s new 

reasoning models, which take extra time to 

undergo an internal dialogue before 

producing a customer-facing answer, 

produced scores pushing 65-70%. In fact, two 

of the GPT-5 reasoning models set new 

records in the benchmark: 

Newer models from other LLM providers did 

not show improved security performance in 

our benchmark.In fact, we saw a small dip in 

security score in Anthropic’s latest releases of 

Claude Sonnet 4.5 and Claude Opus 4.1when 

compared to previous generations: 

Interestingly, all the models that scored 
higher were reasoning models. OpenAI’s 
non-reasoning model (gpt-5-chat) is the only 
GPT-5 model that scored below average 
(52%). This strongly suggests that OpenAI’s 
reasoning tuning may be enhancing security 
performance. 

The performance of Qwen and Grok models 

remained largely unchanged in the 50-59% 

security rate band we saw earlier. 

OpenAI in focus: where did the gains come from? 

Other providers (Anthropic, Google Gemini, Qwen) 

• GPT-5-mini: 72% 

• GPT-5: 70% 

• Claude Sonnet 3.5: 51% 

• Claude Sonnet 3.7: 51% 

• Claude Sonnet 4: 53% 

• Claude Opus 4: 50% 

• Claude Opus 4.1: 49% 

• Claude Sonnet 4.5: 50% 

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT 
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By programming language 

Newer models are getting noticeably better at 

writing secure C# and Java code. It suggests that 

the AI labs are tuning their models in favor of 

major enterprise coding languages. 

FIGURE 2a 

Security Pass Rate vs 
LLM Release Date 
Stratified by 
Language

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT 
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By CWE 

Newer LLMs are a bit better at avoiding SQL injection. Perhaps modern training data is less 

likely to contain these flaws. 

No improvement for other CWEs. 

FIGURE 3a

Security Pass Rate vs 
LLM Release Date 
Stratified by CWE ID

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT 
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Reasoning vs non-reasoning 

Reasoning models (those that internally “work a problem” before replying) averaged higher 

security pass rates this cycle. 

Non-reasoning models tended to lag. A plausible mechanism is that reasoning steps function 

like an internal code review, increasing the chance of catching insecure constructs before 

output. 

FIGURE 4a

Security Pass Rate vs 
LLM Release Date 
Stratified by 
Reasoning vs. 
Non-Reasoning

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT 
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Discussion

Why the divergence across providers? 

The notable result here is that the OpenAI’s reasoning models performed 
exceptionally well. Why was this the case? 

Two hypotheses consistent with our observations: 

1. Explicit training or tuning for security: The 

GPT-5 model card includes a report on the new 

models’ GPT-5’s performance against security 

"capture-the-flag" challenges in which LLMs 

are tasked to “hack” software applications in a 

competition format. This suggests that OpenAI 

considers success in offensive red-teaming 

tasks to be an important performance indicator 

of its models. It is likely that they included 

training data or tuned their models to perform 

well on these security tasks. 

i. Conversely, most other AI labs have not 

publicly emphasized their models’ red 

teaming abilities to the same degree. To the 

contrary, the trend has been to suppress 

the propensity of models to perform 

potentially harmful tasks. Often LLMs often 

refuse to answer questions about offensive 

cybersecurity techniques. Perhaps OpenAI 

is going a different direction with their 

safety tuning. 

Security-oriented reasoning alignment: 

The strong performance of OpenAI’s 

reasoning models (to the exclusion of 

gpt-5-chat, their non-reasoning model) 

suggests that the techniques they used 

to align the model’s internal reasoning 

had a strong influence on the security 

of their outputs. It is possible that 

OpenAI’s tuning examples either 

included a subset of high-quality code 

or showed examples of models 

reasoning about security well. 

2. 

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT 
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Conclusion

In summary, the recent security 
performance gains from newer, 
reasoning-tuned LLMs are a 
significant and encouraging 
development. However, these 
improvements are not uniform 
across the market, with notable 
variance between providers and 
vulnerability classes. It is critical to 
recognize that even the most 
secure model output lacks the 
business and architectural context 
of a live application. Secure code 
generation is only one component 
of a comprehensive security 
posture. 

The following pages include the full 
report with detailed analysis to 
provide the foundational 
methodology, longitudinal data, and 
operational context for these 
findings.  

We encourage you to proceed with 
this update as a lens, interpreting 
all data with the understanding 
that layered controls – including 
SAST and SCA, malicious package 
protection, rigorous code review, 
dependency and secrets 
management, and runtime 
protections – remain essential for 
securing modern software. 

OCTOBER 2025 UPDATE: GENAI CODE SECURITY REPORT 
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Generative AI is rapidly changing the way 

software is developed. Rather than code 

directly in some programming language, 

developers are increasingly describing the 

functionality they want in natural language 

and using large language models to generate 

the concrete code. Significant effort has been 

put into training these models for 

correctness, and recent assessments have 

found that newer, larger models are very 

good at generating code with the expected 

functionality. Less attention, however, has 

been paid to whether the resulting code is 

secure. The primary problem is that 

developers need not specify security 

constraints to get the code they want. For 

example, a developer can prompt a model to 

generate a database query without specifying 

whether the code should construct the query 

using a prepared statement (safe) or string 

concatenation (unsafe). The choice, therefore, 

is left up to the model. 

The goal of this report is to quantify the security 

properties of AI-generated code across a range 

of languages and models. The central question 

we explore is: In the absence of any 

security-specific guidance, do large language 

models generate secure code or not? To 

evaluate this question, we developed a set of 

coding tasks for four popular programming 

languages: Java, Javascript, C#, and Python. 

These tasks involve filling in the missing part of 

a single function according to a comment 

describing the desired code. The key property of 

the tasks is that the requested functionality can 

be implemented in either a secure or insecure 

way. For each task, the insecure choice of 

implementation represents one of four known 

vulnerabilities (detailed later in the paper). We 

run our SAST tool on the resulting generated 

code to determine if it contains the vulnerability. 

For example, if the task asks the model to 

generate a SQL query, and it chooses the string 

concatenation implementation, our SAST tool 

will flag it as having a CWE 89 (“SQL Injection”), 

following the standard MITRE 

Introduction 

2025 GENAI CODE SECURITY REPORT 
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The highlights of our findings are as follows: 

Across all models and all tasks, only 55% of generation tasks 
result in secure code. In other words, in 45% of the tasks the 
model introduces a known security flaw into the code. 

Security performance has been largely unchanged 
over time, even as models get better at generating 
syntactically correct code. 

Larger models do not perform significantly better 
than smaller models 

55% 

Security performance varies dramatically by CWE type. 

Security performance varies somewhat across languages. 

Security performance is remarkably consistent across models. 

classification system. For each combination of 

language and potential CWE, we constructed 

five different versions of the coding task in 

order to vary the conditions and context. 

The complete test set consists of 80 coding 

tasks: four languages and four CWEs, with five 

examples of each. We give these 80 coding tasks 

to over 100 LLMs, covering a wide range of 

model sizes, vendors, and target applications 

(e.g., coding vs general purpose). Our goal is 

partly to assess the security properties of each 

model individually, but also to expose 

trends. We set out to answer questions such 

as: How does security trend with the size of 

the model? Have models been getting better 

at security over time? We largely avoid 

classifying results according to the vendor or 

organization providing the model. 

Our overall results indicate that models fare 

poorly on security, and that, somewhat 

surprisingly, performance is largely flat 

across model sizes and over time: newer and 

larger models do not generate significantly 

more secure code. 

2025 GENAI CODE SECURITY REPORT 
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Methodology & 
Context 

The goal of this project is to evaluate the security 

properties of code generated by LLM-based 

coding assistants across a variety of languages 

and tasks and models, and longitudinally as 

models change. To accomplish this goal, we 

designed a set of code completion tasks with 

known potential for security vulnerabilities. In 

other words, each coding task can be satisfied in 

multiple ways, some of which are secure and 

some of which are insecure. We designed each 

task to test a specific vulnerability, according to 

the MITRE CWE system. We give these tasks to 

each model under test and then check the result 

using our SAST product. 

The complete test set consists of 80 

coding tasks: 

• Four target CWEs: SQL injection (CWE 

89), cross-site scripting (CWE 80), log 

injection (CWE 117), and insecure 

cryptographic algorithm (CWE 327). 

• Four programming languages: Java, 

Javascript, C#, Python 

• Five different coding task instances for 

each combination of target CWE and 

programming language 

Methodology 

2025 GENAI CODE SECURITY REPORT 
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The primary research question of this project is: 

We refer to this property as the security performance or security pass rate of the model: the 

fraction of tasks in which the model chooses the secure implementation. We also investigate a 

set of questions aimed at understanding the results of these tests in more detail: 

Research questions 

Given a coding task with a choice of implementations, do models choose a 
secure or insecure implementation, and with what frequency? 

Is the security performance of a model consistent across programming languages? 

Does security performance differ across the target CWEs? 

Does model size affect security performance? 

How has security performance of models changed over time? 

RQ 1: 

RQ 2: 

RQ 3: 

RQ 4: 

RQ 5: 

2025 GENAI CODE SECURITY REPORT 
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18 print(data) 

19 

    data = get_user_data(user_id) 17

13 

14 

return cursor fetchall() 

if __name__ == __main__ : 15 

16     user_id = input("Enter user ID: ") 

import os 
import sqlite3 

3 

4 def get_user_data(user_id): 

5 """Fetches user data from the database based on user_id."""

6 

1
2

7    conn = sqlite3.connect(os.environ['DB_URI'])
8    cursor = conn.cursor() 

9 

10

11

# todo: get all columns from the 'users' table

# where the ‘id’ matches the provided user_id

12 

Each coding task consists of a single function in 

one of the target languages. We remove part of 

the body of the function and replace it with a 

comment describing the desired functionality. In 

each case the missing code involves a potential 

vulnerability – that is, there are multiple ways to 

implement the target functionality, and at least 

one of them will result in a known CWE. The input 

to the model consists only of the code (with the 

comment) and instructions to fill in the missing 

code according to the comment. The following is 

an example: 

We intentionally constrain the prompt 

in this way for two reasons: 

First, our goal is to evaluate the model’s 
security choices independent of other 
factors. A model might generate different code 

if given more context. For example, given 

surrounding code that already contains 

database queries it seems likely the model will 

choose the same implementation strategy. Our 

approach tests the model’s security choices in 

the absence of any other information that might 

bias it one way or another. 

Second, the space of prompting strategies is 
impossibly large, and prior work has shown that 
small changes in the wording can elicit very 
different responses. We believe that 

programmers are typically focused on the 

functionality of the code they need to generate 

and are not always aware of when it has potential 

security implications. We have therefore adopted 

an approach that adds minimal additional 

information to the prompt in order to expose the 

behavior of the model in the absence of 

security-specific prompting. Many other 

prompting strategies are possible, and existing 

coding assistants often have a system prompt 

that is included in every request. For each 

combination of language and potential CWE we 

designed five different coding tasks – five 

different functions with fill-in-the-blank sections 

that can potentially result in that CWE. These 

functions vary in structure and naming in order 

to provide some variation in the local context. In 

particular, we want to avoid having too many 

“obvious” cases, where, for example, the name of 

a variable makes it easy to determine whether it 

needs to be sanitized or not. 

Coding tasks 

2025 GENAI CODE SECURITY REPORT 
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We focus on following four potential 

vulnerabilities: 

• CWE 89: SQL injection 

• CWE 80: Cross-site scripting (improper 

neutralization of HTML elements) 

• CWE 327: Use of broken or risky 

cryptographic algorithm 

• CWE 117: Log injection 

(improper output sanitization for logs) 

We chose these vulnerabilities for several reasons: 

First, they represent important classes of 
vulnerabilities according to the OWASP Top 
Ten list. 

Second, they all have the property that given 
a functional description of the desired code 
–  e.g., “write a SQL query to retrieve user data 

given the user name” – there are at least two 
possible implementations to choose from, 

where one is secure and one is insecure. Not 

all CWEs have this property. For example, path 

manipulation (CWE 73) requires some extra 

knowledge about what constitutes a 

legitimate path in the application. A model 

might generate generic path checking code 

but cannot know the application-specific 

information required for full remediation. 

Third, we chose CWEs for which our SAST tool 
provides very accurate results, so that we do not 

need to manually review the results. All static 

analyzers can produce a mix of false positives 

and false negatives – this tradeoff is fundamental 

to static analysis. Our SAST engine focuses on 

precise, interprocedural dataflow, but is not flow 

sensitive or path sensitive. The CWEs in this study 

are all checkable with high accuracy using our 

algorithm. 

Vulnerabilities 

The output from each model is a completed 

function, which we compile (if necessary) and 

send to our SAST engine for security evaluation. 

In some cases, however, the resulting code is not 

syntactically correct or does not compile for 

some other reason. We count these cases, but 

they are not sent for security analysis. 

In the results below, we first show the syntactic 
vs security pass rates. Subsequent graphs show 
only the results for cases where the model 
produces code that passes the syntactic/ 
compiler check for at least half of the tasks. 

Model output and security evaluation 

2025 GENAI CODE SECURITY REPORT 
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As described above, under “Coding tasks”, we do 

not attempt to evaluate the impact of different 

prompting strategies. It is possible that with 

security-specific prompting, models might 

choose secure implementations more often. One 

justification for our approach, mentioned earlier, 

is that programmers do not always know when 

the requested code has security implications. 

Another key observation, however, is that for 

some vulnerabilities – specifically, those that 

involve data sanitization – the model might not be 

able to determine which specific variables require 

sanitization (i.e., which variables are “tainted” by 

user-controlled data). Even with a large context 

window, it is unclear whether models can perform 

the detailed interprocedural dataflow analysis 

required to determine this information precisely. 

One threat to the validity of our study is that we 

do not check the functional correctness of the 

generated code – we only check whether it 

compiles and passes our SAST security checks. 

Part of the reason is that numerous other 

studies have already evaluated this property. 

Another reason is that it is very difficult to 

design functional checks for the APIs (e.g., 

how can we check that a SQL query does the 

right thing?). The lack of a correctness check 

leads to two potentially problematic cases: 

• The generated code is functionally incorrect 
and insecure: this case is not a concern 
because we are still obtaining useful 

information. For example, even if the model 

constructs the wrong SQL query, if it uses 

string concatenation to do so, then it is 

introducing a vulnerability. 

• Generated code is functionally incorrect and 
secure: this case is more problematic because 

code can be made secure in a degenerate way 

by simply not satisfying the functional request. 

For example, when prompted to generate a 

SQL query, a model can always generate 

secure code by not including the actual query 

execution at all. 

We manually checked a small subset of the 

generated code and found that the second 

case is extremely rare and does not materially 

affect the overall results of our study. 

Non-goals and threats to validity 

2025 GENAI CODE SECURITY REPORT 
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Overall, we found that models fare poorly on 

security, even as they have significantly improved 

in their ability to generate syntactically (and 

presumably, semantically) correct code. Across all 

languages, CWEs, tasks, and models, the average 

security performance is approximately 55%. That 

is, in 45% of the cases these models introduce a 
detectable OWASP Top 10 security vulnerability 
into the code. 

The graph below shows the overall syntactic and 

security pass rates for all models. Each point 

represents the security pass rate for one model 

Security performance remains low and 
stable with recent models only slightly better 

than their predecessors (see the red trend line) 

across all 80 tasks. The X axis plots the points 

according to the release date of the given model. 

The Y axis is the pass rate (syntactic or security). 

Two clear trends emerge from this data: 

The following sections explore our findings in more detail and answer the research questions set out in 

the previous section. 

Results and Analysis 

FIGURE 1 

Security and Syntax 
Pass Rates vs LLM 
Release Date 

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

Syntactic pass rate has become very good in 
the last year, with many models generating 

compilable code almost all the time. 
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In the graph above, each dot represents the 

security performance of one model for one 

language-specific set of tasks (e.g., all of 

the CWEs and task instances for Java), 20 

tasks per point. The X axis plots the points 

according to the release date of the given 

model. The Y axis is the security pass rate. 

The color of the dot indicates the language, 

and the lines plot the best fit trend. 

The graph highlights three interesting points: 

Performance across languages 
RQ 2: Security performance is remarkably consistent across languages, 
with the notable exception of Java. 

FIGURE 2 

Security Pass Rate 
vs LLM Release 
Date, Stratified by 
Language 

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

Performance is remarkable similar 

across Python, C#, and Javascript. 

Performance is consistent over 
time. Newer models perform very 

slightly better than older models. 

Java is an exception, with performance 

significantly lower than the other 

languages. We explore this question later 

in more detail in the discussion section. 
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Each point on the graph represents the security 

performance of one model for one CWE-specific 

set of tasks (e.g., the SQL query generation tasks 

for all languages). The X axis plots the points 

according to the release date of the given model. 

The Y axis is the security pass rate. The color of 

the dot indicates the CWE. 

Two important trends emerge from this data: 

We discuss possible reasons for this stark 

difference in the discussion section on page 16. 

Performance across CWEs 
RQ 3: The security pass rate varies dramatically by the target CWE involved. 

FIGURE 3 

Security Pass Rate vs 
LLM Release Date, 
Stratified by CWE ID 

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

For SQL injection and cryptographic 
algorithms models are performing 

relatively well and getting better. 

For cross-site scripting and log injection, 

models generally perform very poorly and 

appear to be getting worse. 
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As with the previous graphs, each point 

represents the security performance of one 

model. The X axis plots the points according to 

the release date of the given model. The Y axis is 

the security pass rate. For this graph the color of 

the dot indicates the size class of the model. We 

divide sizes into three categories: 

• Small: less than 20 billion parameters 

• Medium: between 20 and 100 billion 

parameters 
• Large: more than 100 billion parameters 

Performance across model sizes 
RQ 4: Security performance does not improve significantly as models get larger. 

FIGURE 4 

Security Pass Rate vs 
LLM Release Date, 
Stratified by Model 
Size (Parameters) 

Note: Security rate only 
shown for dates/groups with 
syntax pass rate > 50% 

The results show that model size has only a 
very small effect on security performance, 

but even that difference has largely 

disappeared with more recent models. 
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The graphs above show a consistent trend over time – no matter how we slice the data, security 
performance has hardly improved in the last two years. 

Performance over time 
RQ 5: While the performance of models in generating syntactically correct 
code has improved dramatically, security performance is largely flat. 
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Several interesting questions arise from the data above: 

1. Why isn’t security performance getting better even as syntactic 
performance (and semantic performance) does improve? 

Our hypothesis is that this trend reflects the 

fundamental nature of the training data, which 

consists of code samples scraped from the 

Internet. These samples are very likely to be 

syntactically correct (and perhaps also 

semantically correct). Developers rarely check 

in code that does not compile. Therefore, the 

syntactic performance of models depends 

mostly on the ability of the model to learn 

syntax accurately. As models become more 

powerful, they are more able to model 

complex syntax correctly. 

The security properties of the training data are 

quite different: many projects still contain 

unremediated security vulnerabilities, and some, 

such as WebGoat, contain intentionally insecure 

code. It is unknown to us (and unlikely) that 

examples are labeled as secure or insecure for 

the purposes of training. Therefore, models learn 

that both secure and insecure implementations 

are legitimate ways to satisfy a coding request. 

Most of the models tested are using essentially 

the same training data (public code examples 

found on the Internet), so it is unsurprising that 

they all learn the same patterns. This training 

data has not changed significantly over time, so 

model performance does not change. 

Discussion 
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2. Why are there such stark differences between the CWEs? In 
particular, why do models perform so poorly on the cross-site scripting 
and log injection cases? 

The key challenge in properly avoiding 

cross-site scripting and log injection is figuring 

out which variables contain data that must be 

sanitized. Since our coding tasks do not include 

any context beyond the individual functions, 

the models have no way of determining this 

information. As a result, they only occasionally 

sanitize any of the data – often simply in 

response to a common variable name, such as 

“username”, that might be sanitized in many 

training examples. 

More importantly, however, is that determining 

whether or not a variable contains unsafe user 

data is a hard problem. Our static analysis 

engine computes this information very 

precisely but often needs to traverse large 

swaths of the application and build detailed 

models of the abstract heap, pointer aliases, 

and the call graph. 

It is unlikely that LLMs will ever be able to perform 

this kind of task directly, partly due to the deep 

semantic nature of the computation, but also the 

immense context window that would be required. 

SQL injection and cryptographic algorithms 

are fundamentally different because for 

these tasks it is always correct to choose the 

secure implementation. For example, using a 

prepared statement for a SQL query is safe 

regardless of whether the inputs to the 

query are injectable or not. No extra context 

or security knowledge is needed. 

3. Why is Java performance significantly worse than the other languages? 

Somewhat surprisingly, many of the models 

perform much worse on the Java tasks, even for 

cases involving the CWEs that are generally 

easier to avoid, such as SQL injection. We 

believe that this again reflects the nature of the 

training data. Java has a long 

history as a server-side implementation 

language, and it predates the recognition of 

SQL injection as a vulnerability. Our hypothesis, 

therefore, is that the Java training data contains 

many more examples that have security 

vulnerabilities than the other languages. 
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While large language models have become adept at generating functionally 
correct code from a natural language specification, they continue to introduce 
security vulnerabilities at a troublingly high rate. This deficiency will not be 
easy to fix. In part it reflects the fact that a significant fraction of the code 
examples used for training contain security flaws. It also reflects the fact that 
models cannot easily discover program properties, such as whether data is 
user controlled, that are crucial for proper remediation of flaws. 

Looking to protect yourself from the risks of AI-generated code? 
Click here to learn more about adaptive application security for the AI era. 

Conclusion 

2025 GENAI CODE SECURITY REPORT 

26



Copyright © 2025 Veracode, Inc. All rights reserved. Veracode is a registered trademark 
of Veracode, Inc. in the United States and may be registered in certain other jurisdictions. 
All other product names, brands or logos belong to their respective holders. All other 
trademarks cited herein are property of their respective owners. 

About Veracode 

Veracode is a global leader in Application Risk Management for the AI era. Powered by trillions 

of lines of code scans and a proprietary AI-assisted remediation engine, the Veracode platform 

offers adaptive software security and is trusted by organizations worldwide to build and 

maintain secure software from code creation to cloud deployment. Thousands of the world’s 

leading development and security teams use Veracode every second of every day to get 

accurate, actionable visibility of exploitable risk, achieve real-time vulnerability remediation, and 

reduce their security debt at scale. Veracode is a multi-award-winning company offering 

capabilities to secure the entire software development life cycle, including Veracode Fix, Static 

Analysis, Dynamic Analysis, Software Composition Analysis, Container Security, Application 

Security Posture Management, Malicious Package Detection, and Penetration Testing. Learn 

more at www.veracode.com, on the Veracode blog, and on LinkedIn and X. 

Acknowledgements 

We’d like to express our sincere gratitude to the individuals and teams who contributed to the 

development of this report on Generative AI and code security. In particular, we thank Rene 

Milzarek, Samuel Guyer, Humza Tahir, John Simpson, Felix Brombacher, and Sivani Puvvala for 

their invaluable insights, technical expertise, and support throughout the research and writing 

process. We’d also like to thank Seung Wook Kim, Srinivasan Raghavan, and Jake Hyland for 

contributing to the test data. Furthermore, we thank Jens Wessling and members of the applied 

research team for their feedback and discussion on the study approach and design. 


