
THE PROGRESS WE’VE ALL MADE B

State of
Software
Security
The Progress We’ve All Made

V O L U M E 1 2

VERACODE STATE OF SOFTWARE SECURITY REPORT C

THE PROGRESS WE’VE ALL MADE 01

02 Executive Summary
03 The State of Software Security at a Glance

06 Introduction

08 How Software Development Has Changed
09 The Number of Applications Scanned Has Tripled

11 The Rise of Microservices

14 Increase in Median Scan Cadence

16 Organizations Are Using Multiple Types of Scanning

17 Software Bill of Mistakes
18 Organizations Heavily Leverage Open-Source Libraries

20 Most Developers Stick With the Same Libraries Year Over Year

22 Third-Party Libraries Have Fewer Flaws

24 The Flaws of Yesterday Are (Still) the Flaws of Today
26 The Lowdown on Static, Dynamic, and Software Composition Analysis

32 Fix Rate Comparisons by Scan Type

34 Capacity for Flaw Remediation by Scan Type

35 Where Do We Go From Here?
36 Most Organizations Using Veracode Security Labs

Are Fixing Flaws Faster

40 Conclusions
43 Appendix: Methodology

44 A Note on Mass Closures

C
on

te
nt

s SECTION 01

SECTION 02

SECTION 03

SECTION 04

SECTION 05

SECTION 06

SECTION 07

VERACODE STATE OF SOFTWARE SECURITY REPORT 02

Executive Summary

VERACODE STATE OF SOFTWARE SECURITY REPORT 02

01

S
E
C
T
I
O
N

The world is becoming more connected
than ever before … Connectivity makes
our lives easier, but it also increases risk.
One security flaw can have a domino
effect, leaving software vulnerable all
across the globe.

But it’s not just increased connectivity
that’s shaping the security landscape —
it’s the hypercompetitiveness and the
need to constantly innovate. To move
faster, many development teams have
turned to native cloud technologies,
microservices architectures, and open-
source code to accelerate and scale their
efforts. Additionally, development teams
have adopted agile methodologies and
are automating as many steps in the
development process as possible.

While this evolution increases the speed
of the software development lifecycle,
it also introduces new complexities
and risks.

For our 12th State of Software Security
report, we’ll explore these trends with
the help of the Cyentia Institute to assess
how the software security landscape is
continuing to evolve. Our goal is to help
you make informed decisions about your
software security program so that you can
minimize your risk and meet cybersecurity
regulations like those outlined in
the White House Executive Order on
Improving the Nation’s Cybersecurity
issued on May 12, 2021.

https://www.veracode.com/executive-order

THE PROGRESS WE’VE ALL MADE 03

Similar to last year, we looked at the entire history of active
applications, not just the activity associated with the application over
one year. By doing so, we can view the full life cycle of applications,
which results in more accurate metrics and observations. Aside from
looking at the past, we also imagined the future by considering
practices — such as Veracode Security Labs training — that might
help improve application security.

The State
of Software
Security at
a Glance

THE PROGRESS WE’VE ALL MADE 03

Microservices
In 2018, roughly 20 percent
of applications incorporated
multiple languages. This year,
less than 5 percent of apps used
multiple languages, suggesting
a pivot to smaller, one-language
applications or microservices.

20%

5%

2018

2021

JavaScript, Python, and .NET have
seen declines in app sizes, indicating

a trend toward more microservices.

The Number of Apps
Scanned Has Tripled
Organizations are scanning,
on average, more than 17 new
applications per quarter. This
number is more than triple the
number of apps scanned per
quarter a decade ago.

2021

2011

3X INCREASE IN NUMBER
OF APPS SCANNED

VERACODE STATE OF SOFTWARE SECURITY REPORT 04

Scan Cadence
Continuous testing and integration, which includes security scanning in
pipelines, is becoming the norm. A decade ago applications were scanned
two or three times a year. Now, 90 percent of applications are scanned more
than once a week with the majority scanned three times a week.

VERACODE STATE OF SOFTWARE SECURITY REPORT 04

Flaw Prevalence
Third-party libraries
have fewer flaws.

of libraries used
had a known flaw

of libraries used
had a known flaw

35%

10%

2017 2021

INCREASE in the use
of multiple scan types

Multiple Scan Types
We’ve seen a 31 percent increase in the use of multiple scan types
between 2018 and 2021, with much of that gain coming from organizations
using the full suite of static, dynamic, and SCA scans.

2021

2010

20X INCREASE IN MEDIAN SCAN
CADENCE FROM 2010 TO 2021

31%

THE PROGRESS WE’VE ALL MADE 05

Third-Party
Libraries

THE PROGRESS WE’VE ALL MADE 05

On a positive note, there is a noticeable improvement in time
to remediation for third-party flaws. Back in 2017, it would
take over three years to get to the 50 percent (half-life)
closed point, and now it takes just over a year.

77% of flaws in third-party libraries
remain unfixed after three months

3 years

1 year

2017

2021

S
E
C
T
I
O
N

0
1

DECREASE in the time it takes
for organizations to fix flaws

Open Source
Open-source libraries are still
a significant cause for concern.

97%
of Java applications
are made up of open
source libraries

Veracode Security Labs
On average, organizations with Veracode Security Labs training
decrease their time to fix 50 percent of flaws by 35 percent.

35%

VERACODE STATE OF SOFTWARE SECURITY REPORT 06 VERACODE STATE OF SOFTWARE SECURITY REPORT 06

02

S
E
C
T
I
O
N

In 2019, for our 10th annual State of
Software Security report, we began
looking at the specific concerns
associated with the use of open-source
software and have been fortunate to
be able to map the complex landscape
of secure software development.
We’ve identified a few ideas that many
of our customers probably feel in their
hearts, and we confirm them with data
— things like scanning at a regular, rapid
pace is good.

Security debt can build over time, and
addressing it early can help mitigate work
down the road. Using multiple types of
scanning — static, dynamic, and software
composition analysis — can give a fuller
picture of an application’s security, and it
helps remediation happen more quickly
and more completely.

These things can help every application, even
those old creaky legacy applications, and
it’s been rewarding to be able to verify and
quantify the effect of what many developers
feel makes applications more secure.

Introduction

THE PROGRESS WE’VE ALL MADE 07

So where does
that leave us for
this 12th report?

We feel like we’ve quantified some of the mysteries about application security
with Veracode’s extensive data, and we could continue to do that. But we
think it behooves an industry to occasionally take a step back to try to get
a view of the past and take a look toward the future — to see where the
landscape has been steady and where it’s changed and to try to understand
which principles have stood the test of time and which have faltered.

So we’re going to do just that:

1 Look at the use of software analysis tools

 We’ll start with a look at how people are using software analysis tools
and how that’s changed over the years. We’ll see development trends
reflected in those scans. We’ll look at how free and open-source software
continues to be integral (though variably so) to most applications.

2 Analyze flaws in software

 Then we’ll look at how those development trends manifest themselves
in the flaws that get introduced into software.

3 Examine how flaws are fixed

 Next, we’ll examine how things are fixed and whether developers
are getting better at fixing things.

4 Look to the future of secure software

 Lastly, we’ll take a peek into the future and think about what exactly
developers can do to write more secure software. In particular, we’ll
see that the simple act of taking time to learn how to fix flaws helps
get them fixed faster and helps prevent future bugs from showing up.

Let’s take a quick trip down memory lane …

VERACODE STATE OF SOFTWARE SECURITY REPORT 08

How Software
Development
Has Changed

One of the advantages of serving the software
development community for so long is that Veracode is
able to see changes in development practices over time.
So rather than diving right into security this year, we want
to focus on how developers themselves are approaching
applications and how that’s changed.

VERACODE STATE OF SOFTWARE SECURITY REPORT 08

03

S
E
C
T
I
O
N

THE PROGRESS WE’VE ALL MADE 09

The Number
of Applications
Scanned Has
Tripled

First, we want to examine just how many applications developers are
scanning for flaws. Figure 1 shows that more applications are being
scanned than ever before. And the increase is not simply due to the fact
that there are more organizations. In the last year, most organizations are
creating, on average, more than 17 applications for scanning per quarter, up
from approximately five a decade ago. But why might this be the case?

We have two hypotheses:

1 Organizations are creating smaller, more modular,
applications that do a single thing.

2 Organizations are expanding the scope of their security
to lower-criticality applications.

Organizations are scanning, on average, more than 17 new
applications per quarter. This number is more than triple
the number of apps scanned per quarter a decade ago.

Figure 1: Application creation over time

Scanning
Average

0

5

10

15

20

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

WEEK APPLICATION FIRST SCANNED

N
EW

 A
PP

LI
CA

TI
O

N
S

PE
R

AC
CO

U
N

T

NUMBER OF ACCOUNTS 10 200 500

VERACODE STATE OF SOFTWARE SECURITY REPORT 10

Very Low
Low

Medium

High

Very High

0%

25%

50%

75%

100%

SCAN DATE

PE
RC

EN
T

O
F

AP
PL

IC
AT

IO
N

S
BY

 C
RI

TI
CA

LI
TY

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Figure 2: Application criticality over time

We actually see that the latter is not true in Figure 2. The distribution of app
criticality has been fairly constant, with some bumps along the way when new or
existing users onboard many applications (as was the case in mid-2020 when a single
user scanned a few hundred “Medium” criticality applications). The skew has been
pretty consistent over the last 10 years, with most applications having “High”
or “Very High” criticality, and only a handful registering “Low” or “Very Low.”

If developers are not simply scanning applications they considered unimportant
before, perhaps there is a profusion of new applications — smaller, more modular
ones. Some might call them “microservices.”

THE PROGRESS WE’VE ALL MADE 11

The Rise of
Microservices

0%

10%

20%

30%

0

25

50

75

100

WEEK APPLICATION FIRST SCANNED

PE
RC

EN
T

O
F

M
U

LT
I-

LA
N

GU
AG

E
AP

PL
IC

AT
IO

N
S

IN
TEREST

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

NUMBER OF APPLICATIONS 1 10 100

Google search interest
in “microservices”
Google search interest
in “microservices”

Figure 3: Use of multiple languages in new applications

Up until roughly 2018, there was a slow but steady increase in the number
of applications using multiple languages, up to a peak (excluding outliers)
of about 20 percent of apps incorporating multiple languages. But as the
notion of microservices gained favor and took over, there was a nosedive,
with less than 5 percent of applications currently using multiple languages.

So we see that developers are using one language at a time, but are their
applications getting smaller? Figure 4a says it’s complicated.

What defines microservices? They are collections of loosely coupled
applications, usually with a small codebase, that communicate via APIs.
The advantage of microservices is that it’s easier to work on the various parts
of an application if changing one part is unlikely to affect the other bits.

So how might we see this reflected among Veracode users? Well, we’d expect
applications to increasingly use one language and become smaller in size.
Figure 3 looks at the first part of that hypothesis.

In 2018, roughly
20 percent of applications
incorporated multiple
languages. This year,
less than 5 percent of apps
used multiple languages.

Are developers pivoting
to microservices?

S
E
C
T
I
O
N

0
3

VERACODE STATE OF SOFTWARE SECURITY REPORT 12 VERACODE STATE OF SOFTWARE SECURITY REPORT 12

Figure 4a: Application size over time

Java

0.01

1

100

C++

0.1

10

1k

2009 2011 2013 2015 2017 2019 2021

PHP

0.001

0.1

10

2011 2013 2015 2017 2019 2021

JavaScript

0.01

1

100

2015 2017 2019 2021

Python

1

0.01

100

2017 2019 2021

DATE OF FIRST STATIC SCAN

M
EA

N
 S

IZ
E

(M
B)

2009 2011 2013 2015 2017 2019 2021

.NET

0.01

0.1

1

10

100

2009 2011 2013 2015 2017 2019 2021

THE PROGRESS WE’VE ALL MADE 13

0.01

0.1

1

10

DATE OF FIRST STATIC SCAN

SC
AN

 S
IZ

E
(M

B)

Android

2012 2014 2016 2018 2020 2022

Figure 4b: Android’s abrupt size shift

 JAVASCRIPT

JavaScript applications have gotten
considerably smaller over time, possibly
with the inclusion of a more diverse and
robust library ecosystem.

 PYTHON AND .NET

Both Python and .NET have seen
reductions in size, but that may be more
regression to the mean than a true trend.

 C++ AND JAVA

Meanwhile, applications written in more
established languages like C++ and Java
have remained more or less the same
size over the past few years.

SCALA

Scala applications (not shown) have seen
a decline in size, and the popularity of
Scala compared to its more heavyweight
godfather Java may have something to do
with different architectural goals.

GO

Interestingly, Go (not shown), a language
commonly associated with microservices,
has actually seen an increase in
application size.

 ANDROID

A quick aside on Android applications: Android
applications were getting increasingly large until the
release of Android N, which switched to an OpenJDK.
This allowed for significantly smaller application sizes
and was followed by another slow and steady increase.
We don’t think this is a trend, but it’s nice to see major
events in software ecosystems validated in data.

Applications written in a few languages we might
consider “good” for a microservice-type architecture
certainly have declined in size.

THE PROGRESS WE’VE ALL MADE 13

S
E
C
T
I
O
N

0
3

VERACODE STATE OF SOFTWARE SECURITY REPORT 14

Increase in
Median Scan
Cadence

“It is no longer sufficient to scan software as a pre-production
step in the last phase of the software development lifecycle.
Just as software is now deployed continuously, software
security scanning must also happen continuously as a fully
integrated part of the software development process.”

SAM KING, CEO, VERACODE

It’s been said that “software is eating the world.” We think it’s
probably also fair to say that “agile is eating the software world.”

Continuous testing and integration, which includes security scanning into
pipelines, is becoming the norm, and we can see that reflected in how often
users are scanning their applications. A decade ago users were averaging
two or three scans a year. Now, most are running daily static scans and
weekly dynamic scans. Software composition analysis (SCA) scans also occur
at least weekly. The sooner in the lifecycle you can discover problems, the
more likely you’ll be able to solve them quickly, before they become bigger
a problem down the road.

THE PROGRESS WE’VE ALL MADE 15

DATE OF FIRST SCAN

M
EA

N
 T

IM
E

BE
TW

EE
N

 S
CA

N
S

(D
AY

S)

0

1

10

100

1k

Manual

2010 2015 2020

Dynamic

2010 2015 2020

Static

2010 2015 2020

SCA Agent

2018 2020 2022

Figure 5: Scanning cadence over time

S
E
C
T
I
O
N

0
3

But is scanning more good?

If you look back at SOSS volumes 9, 10, and 11, you’ll see that applications
that are scanned at a regular cadence fix more flaws faster than those that
are only scanned periodically. Security seems to prefer agile development.

Median Scan Cadence

2010
Median application was scanned less
than once a month (only 10 percent of
apps scanned more often than weekly)

2021
90 percent of apps scanned
more than once a week (majority
scanned three times a week)

20X
increase

VERACODE STATE OF SOFTWARE SECURITY REPORT 16

Organizations
Are Using
Multiple Types
of Scanning

Part of the advantage of the continuous integration paradigm is the
ability to easily add new components to the pipeline. Static testing?
A must. The use of dynamic analysis is growing as well, and since
we’re becoming more and more aware of the potential risks inherent
in open-source software, it’s a no-brainer that secure development
includes software composition analysis.

We’ve seen a 31 percent increase in the use of multiple scan types
between 2018 and 2021, with much of that gain coming from organizations
using the full suite of static, dynamic, and SCA scans. We’re not just
pointing this out as a random fact.

Organizations that used dynamic
in addition to static scanning
were able to remediate

50% of flaws

On average

24 days faster

And including SCA shaves off

another 6 days

LAST YEAR WE FOUND:

So fire up those
scanners, folks!

https://info.veracode.com/report-state-of-software-security-open-source-edition.html
https://info.veracode.com/report-state-of-software-security-open-source-edition.html

THE PROGRESS WE’VE ALL MADE 17

Software Bill
of Mistakes

“In many respects, development
teams have shifted from writing
software to assembling software.”

CHRIS WYSOPAL, CTO AND CO-FOUNDER, VERACODE

S
E
C
T
I
O
N 04

THE PROGRESS WE’VE ALL MADE 17

VERACODE STATE OF SOFTWARE SECURITY REPORT 18

Organizations
Heavily Leverage
Open-Source
Libraries

 JAVA

Java remains steadfastly mostly third-party code and has pushed
even more so in that direction in the last few years.

 .NET

There is an interesting “shock” to the data for .NET: In mid-2020, we saw
an abrupt shift in the percentage of third-party code in .NET applications.
The relative time period coincides with the release of .NET 5 (formerly
.NET core), which integrated and unified a good amount of functionality
into a single framework. It’s good to see developers keep up with the
latest updates.

 JAVASCRIPT AND PYTHON

JavaScript and Python show the barbell effect, with applications being
either mostly homegrown or mostly third-party libraries, causing the
trend line to bounce around the middle over time.

 PHP AND C++

PHP and C++ remain relatively constant, leaning heavily toward
mostly homegrown code.

How has open-source, and, more generally, third-party software
changed over the last few years?

Last year’s report looked at the proportion of code included in each scan
that was third-party code versus homegrown. What we saw was interesting.
Most applications (depending on the language) had a kind of barbell effect,
being composed of almost entirely third-party code or almost entirely
in-house code.

There were of course some exceptions. Java’s OOP design philosophy
of gluing classes together until your code begins to look like a functioning
application makes code reuse a breeze. And why write your own classes
when there are perfectly good third-party ones freely available? The result
is that most of the code in Java applications comes from third parties. But
have those barbells evolved over time? Let’s take a look at Figure 6.

THE PROGRESS WE’VE ALL MADE 19

0%

50%

100%

0%

50%

100%

0%

50%

100%

PR
O

PO
RT

IO
N

 O
F

TH
IR

D
-P

AR
TY

 C
O

D
E

.NET

Python

C++

JavaScript

2019 2020 2021

Java

2019 2020 2021

PHP

Figure 6: Third-party code by language S
E
C
T
I
O
N

0
4

VERACODE STATE OF SOFTWARE SECURITY REPORT 20

Most Developers Stick With the
Same Libraries Year Over Year

We are seeing some evolution in terms of how much third-party code
developers are using in each language.

Last year’s open source report looked at shifts in the use of vulnerable
libraries between 2019 and 2020. Since we’re focusing on how things have
evolved over as long a time period as the data can muster, we want to expand
that view a little bit here. Figure 7 takes a look at how the top 10 most popular
libraries across our six languages of interest have evolved over time.1

Figure 7 is what is referred to as a stacked area chart. Each band represents
the percentage of scanned repositories that are using a particular library.
The thicker the band, the more popular the library. When the overall height
of the chart increases, it indicates that those 10 libraries are all growing
in popularity. If libraries waxed and waned in popularity frequently, we
would expect to see large swells of color that might peter out over time.
We don’t see that in Figure 7, but rather mostly uniform popularity of
those top libraries.

We won’t spend a ton of time going over each wiggle. But what we do see
is that, for all the languages, the most popular libraries haven’t changed
all that much. Things like debug and inherits continue to be popular for
JavaScript though they may swap around the top few spots year over year.
The larger lesson here is that developers are going to stick with tried-and-
true libraries and likely aren’t going to attempt to refactor their code base
to pick up the latest hot commodity.

This is indeed what we saw in last year’s SOSS: Open Source Edition. Updates
happened slowly when libraries didn’t have flaws, but relatively quickly when
they did. As long as open-source developers continue to fix security flaws,
developers will keep on using those libraries.

2 A few notes on this figure. We are swapping Ruby in here for C/C++ as most C/C++ applications don’t use an explicit package manager and
instead use makefiles to see if appropriate libraries are present. This can make extracting what applications are using what libraries pretty
tough. We only have data going back to 2019 on .NET, so be sure to check the scales. Finally, the colors in this figure are used to differentiate
the individual libraries, but are reused for purely aesthetic reasons.

Keep on keeping on …

We found that
developers stick with
tried-and-true libraries
and rarely attempt to
refactor their code
base to pick up the
“coolest” or “most-
popular” libraries.

https://www.veracode.com/sites/default/files/pdf/resources/ipapers/soss-v11-open-source-edition/index.html
https://www.veracode.com/sites/default/files/pdf/resources/ipapers/soss-v11-open-source-edition/index.html
https://info.veracode.com/fy22-state-of-software-security-v11-open-source-edition.html

THE PROGRESS WE’VE ALL MADE 21

Apache Commons Codec

Guava

Jackson-annotations

Jackson-core

jackson-databind

org.springframework:spring-context

SLF4J API Module

Spring AOP

Spring Beans

Spring Core

Java

RE
LA

TI
VE

 P
O

PU
LA

RI
TY

Diagnostics.Debug

Globalization

IO

Newtonsoft.Json

Reflection

Resources.ResourceManager

Runtime

Runtime.Extensions

Text.Encoding

Threading.Tasks

.NET

2020 2021 2018 2019 2020 2021

certifi

chardet

idna

python-dateutil
pytz
PyYAML
requests
setuptools

six

urllib3

Python

2018 2019 2020 2021

di�-lcs
json

rake
rspec
rspec-core
rspec-expectations
rspec-mocks
rspec-support

Ruby

thor
tzinfo

2018 2019 2020 2021

doctrine/instantiator

php-file-iterator

php-text-template

psr/log

sebastian/di�

sebastian/environment

sebastian/exporter

sebastian/global-state

sebastian/recursion-context

sebastian/version

PHP

2018 2019 2020 2021

balanced-match
brace-expansion
debug
escape-string-regexp
glob
inherits
minimatch
minimist
ms
supports-color

JavaScript

2018 2019 2020 2021

Figure 7: Popular libraries by language S
E
C
T
I
O
N

0
4

VERACODE STATE OF SOFTWARE SECURITY REPORT 22

Third-Party
Libraries Have
Fewer Flaws

We’ve seen library usage evolve over time, though maybe not in a
nice smooth trend. But what implications does that have for security?
After all, that’s really what we’re here to talk about, right? Making
applications more secure. Even the federal government is taking notice
of this whole “third-party libraries might be risky, actually” idea.

The recent Executive Order on Improving the Nation’s Cybersecurity lays out
the following about securing the software supply chain:

“The development of commercial software often lacks transparency, sufficient
focus on the ability of the software to resist attack, and adequate controls to
prevent tampering by malicious actors. There is a pressing need to implement
more rigorous and predictable mechanisms for ensuring that products function
securely, and as intended. The security and integrity of ‘critical software’ —
software that performs functions critical to trust (such as affording or requiring
elevated system privileges or direct access to networking and computing
resources) — is a particular concern. Accordingly, the Federal Government must
take action to rapidly improve the security and integrity of the software supply
chain, with a priority on addressing critical software.”

So are applications using more or fewer flawed libraries? As with many things in
our research, Figure 8 tells a language-specific story. (But before you dive into
Figure 8, notice that the vertical axes are different for different languages.)

There are clear trends for Java, JavaScript, and Python, and that trend is very
good, because it goes steeply down. In 2017 nearly 35 percent (on average)
of libraries used had a known flaw. In more recent years that has come down
to nearly 10 percent. JavaScript has gone from about 10 percent to less than
4 percent, Python from about 25 percent to nearly 10 percent, and Go (not
shown) from 7 percent down to 4 percent.

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

THE PROGRESS WE’VE ALL MADE 23

.NET Java

0%

25%

50%

75%

0%

5%

10%

15%

20%

PE
RC

EN
T

O
F

VU
LN

ER
AB

LE
 L

IB
RA

RI
ES

2020 2021 2017 2018 2019 2020 2021

PHP

0%

5%

10%

15%

20%

2020 2021

Python

0%

20%

40%

60%

2018 2019 2020 2021

JavaScript

0%

10%

20%

30%

40%

50%

2018 2019 2020 2021

Ruby

0%

20%

40%

2018 2019 2020 2021

Figure 8: Percent of flawed libraries by language S
E
C
T
I
O
N

0
4

VERACODE STATE OF SOFTWARE SECURITY REPORT 24

The Flaws of
Yesterday Are
(Still) the Flaws
of Today

This type of report would be
relatively easy to create if all — or
heck, even some — of the attacks
were fresh and new. The stories
would almost write themselves.
But history is teaching us that we
will experience the same types of
flaws year after year. Sure, there
are variations among languages
and things may shift around in
prevalence. But by and large, the
technical flaws themselves don’t
go away, and any changes we do
observe tend to evolve slowly.

VERACODE STATE OF SOFTWARE SECURITY REPORT 24

05

S
E
C
T
I
O
N

THE PROGRESS WE’VE ALL MADE 25

Take as an example Figure 9 (or really any of the upcoming plots). We pulled
out the flaws listed in the OWASP Top 10 and CWE/SANS Top 25 and those
classified as “High” criticality or above. If you look closely at each of those
over time, you’ll notice some peaks and valleys. But we want you to pull
back a bit, and perhaps squint your eyes so that you can see the overall
trend in these plots. Notice that, even though the lines may bounce around,
they are all slowly decreasing.

That’s good news: The trend across all the applications
is a general reduction in flaw prevalence.

Any Flaws

CWE/SANS Top 25

High Severity

OWASP

0%

25%

50%

75%

100%

2016 2018 2020

PE
RC

EN
T

O
F

AP
PL

IC
AT

IO
N

S

Figure 9: Percent of applications with various flaw types in static analysis

The trend across all the
applications is a general
reduction in flaw prevalence.

VERACODE STATE OF SOFTWARE SECURITY REPORT 26

The Lowdown on Static, Dynamic,
and Software Composition Analysis

Even though we just said
you should take a step back
and look at the big picture,
we offer this next plot as an
example of both why that’s a
good thing and why you don’t
want to stop there.

As you look at the rankings in Figure 10 you’ll probably notice that CRLF
injection is more prevalent than information leakage. Maybe you find that
helpful, but as anyone who’s worked in more than one language will tell
you, each language has its own strengths and weaknesses, and this applies
to secure development as well. The development language matters when
it comes to the types of flaws introduced — at least for some of the
detection methods.

Therefore, it’s worthwhile to understand a bit about these methods
because it will help point us in the direction of further areas to investigate.

Static Analysis

Dynamic Analysis

Software Composition Analysis

THE PROGRESS WE’VE ALL MADE 27

14.9%

18.8%

21.3%

23.5%

40.1%

42.4%

42.6%

43.5%

56.4%

60.4%

61.1%

64.7%

Time and State

Authentication Issues

Encapsulation

SQL Injection

Cross-Site Scripting (XSS)

Directory Traversal

Insu�cient Input Validation

Credentials Management

Code Quality

Cryptographic Issues

Information Leakage

CRLF Injection

Static Analysis

6.6%

6.9%

7.5%

10.1%

11.2%

41.8%

54.7%

57.1%

59.2%

72.5%

73.2%

96.6%

SQL Injection

Code Injection

Code Quality

Cross-Site Scripting (XSS)

Session Fixation

Deployment Configuration

Authentication Issues

Encapsulation

Cryptographic Issues

Information Leakage

Insecure Dependencies

Server Configuration

Dynamic Analysis

2.5%

4.5%

10.5%

20.4%

24.9%

26.5%

28.8%

33.6%

34.9%

46.2%

48.6%

51.8%

Session Fixation

Numeric Errors

Bu�er Overflow

Authentication Issues

Directory Traversal

Cross-Site Scripting (XSS)

Command or Argument Injection

Cryptographic Issues

Code Injection

Encapsulation

Information Leakage

Insu�cient Input Validation

SCA

S
E
C
T
I
O
N

0
5

Figure 10: Top software weaknesses discovered by scan type

THE PROGRESS WE’VE ALL MADE 27

VERACODE STATE OF SOFTWARE SECURITY REPORT 28

Static analysis looks directly
at the source code and thus
needs to know what to look
for in different languages.
It’s very strong at detecting
places where maybe memory
isn’t managed correctly or
input isn’t properly validated
or sanitized.

And given that, it shouldn’t come as a surprise that the results of static
analysis are very dependent on the development language. It’s rather
common to find flaws with buffer/memory management in a language like
C++, but those are nonexistent in languages like .NET or Java, where those
functions are abstracted away from the developer. So even though CRLF
injection is the top flaw type for static analysis overall, it’s not even in the
top 10 flaws in C++ or PHP.

Figure 11 expands the list of static analysis flaws (the top graph in
Figure 10) in two different ways. First, it breaks out the flaws by language,
so the differences across languages become more apparent. (But note that
the vertical axis differs for different languages.) Second, it adds the element
of time. This enables us to see the trends and, again, if we pull back a bit
and squint through the details, it’s clear that most everything is trending
down over the past few years.

There are a few things worth calling out here that are not
trending down, though.

 JAVASCRIPT

 Has some growing challenges with identity management:
Both credentials management and authentication issues
are trending upward over time.

 JAVA

 And the overall declines across Java are clearly more pronounced
than the very subtle declines seen in PHP applications.

Static Analysis

THE PROGRESS WE’VE ALL MADE 29

S
E
C
T
I
O
N

0
5

Figure 11: Software weaknesses found by static analysis by language

Code Quality

Credentials Management

CRLF Injection

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Information Leakage

Insu�cient Input Validation

SQL Injection

Code Quality

Credentials Management

CRLF Injection

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Encapsulation

Information Leakage

Insu�cient Input Validation

Code Quality

Command or Argument Injection

Credentials Management

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Encapsulation

Information Leakage

Untrusted Initialization

Bu�er Management Errors

Bu�er Overflow

Code Quality

Cryptographic Issues
Directory Traversal

Error Handling

Numeric Errors

Potential Backdoor

Race Conditions

Authentication Issues

Code Quality

Credentials Management
CRLF Injection

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Information Leakage

Insu�cient Input Validation

Authorization Issues

Code Quality

Credentials Management

CRLF Injection

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Information Leakage
Insu�cient Input Validation

PHP Python

Java JavaScript

.NET C++

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

40%

60%

80%

0%

20%

40%

60%

20%

40%

60%

20%

40%

60%

80%

40%

60%

80%

0%

25%

50%

75%

PR
O

PO
RT

IO
N

 O
F

AP
PL

IC
AT

IO
N

S
W

IT
H

 F
IN

D
IN

G
S

VERACODE STATE OF SOFTWARE SECURITY REPORT 30

Authentication Issues

Code Quality
Cross-Site Scripting (XSS)

Cryptographic Issues

Deployment Configuration

Encapsulation

Information Leakage

Server Configuration

Session Fixation

0%

25%

50%

75%

100%

PR
O

PO
RT

IO
N

 O
F

AP
PL

IC
AT

IO
N

S
W

IT
H

 F
IN

D
IN

G
S

2017 2018 2019 2020 2021

Dynamic scanning takes
advantage of, and is run against,
the runtime environment.

Software composition analysis
is the third type of scan, and
it operates by tracking the
various open-source projects
and packages and then
identifying which are included
in the code base.

It doesn’t dive deeply into the idiosyncrasies of the underlying languages but
instead can find more flaws in the execution and interface of the code. Notice
the top types of flaws here generally don’t overlap with the static analysis
findings. Server configurations and information leakage were consistently the
leading categories of flaws found across all the underlying languages. The flaws
were so consistent across languages that it’s not worth showing the differences.
Each individual language looked like the overall trends shown in Figure 12.

This allows all the existing information in those libraries to be shared with
the developers. The flaws in third-party software can be reported from a variety
of sources such as static code scans, manual code review, security researchers
reporting flaws, etc. Once again, we find that these types of flaws vary by
language, as you can see in Figure 13 (but note that the vertical axis uses
different scales for different languages). Some languages (Java, JavaScript,
and Python) show clear declines while .NET and C++ don’t appear to show
that type of decline in their third-party libraries.

Figure 12: Software weaknesses found by dynamic analysis

Dynamic Analysis

Software Composition Analysis

THE PROGRESS WE’VE ALL MADE 31

S
E
C
T
I
O
N

0
5

PHP Python

Information Leakage

Code Injection

Encapsulation

Java JavaScript

Cross-Site Scripting (XSS)

Cryptographic Issues
Directory Traversal

Insu�cient Input Validation

.NET C++

10%

20%

30%

40%

50%

25%

50%

75%

25%

50%

75%

0%

5%

10%

15%

20%

40%

60%

80%

0%
2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

20%

40%

60%

80%

Information Leakage

PR
O

PO
RT

IO
N

 O
F

AP
PL

IC
AT

IO
N

S
W

IT
H

 F
IN

D
IN

G
S

Insu�cient Input Validation

Cryptographic Issues
Command or Argument Injection

Directory Traversal

Authentication Issues
Cross-Site Scripting (XSS)

Insu�cient Input Validation
Information Leakage

Cross-Site Scripting (XSS)
Encapsulation

Authentication Issues
Code Injection
Directory Traversal

Command or Argument Injection

Server Configuration

Cross-Site Scripting (XSS)
Insu�cient Input Validation

Code Injection
Command or Argument Injection
Cryptographic Issues
Information Leakage
Encapsulation
Directory Traversal
Authentication Issues

Cross-Site Scripting (XSS)
Insu�cient Input Validation

Cryptographic Issues
Code Injection
Directory Traversal
Command or Argument Injection
Encapsulation
Bu�er Overflow
Information Leakage

Code Injection

Encapsulation
Authentication Issues

Command or Argument Injection

Insu�cient Input Validation

Information Leakage
Cross-Site Scripting (XSS)

Code Injection

Encapsulation

Cryptographic Issues
SQL Injection

Bu�er Overflow
Command or Argument Injection

Figure 13: Software weaknesses found by SCA, by language

VERACODE STATE OF SOFTWARE SECURITY REPORT 32

Fix Rate
Comparisons
by Scan Type

We’ve spent our time up until now looking at applications, detection
methods, types of flaws and their prevalence, and how developers have
changed their security practices over time. But what about actually fixing
things? This is a good point to transition into thinking about how many flaws
are getting fixed and how quickly (or not so quickly). Anyone who’s been
reading our research for the last few years will surely recognize this next plot.
It looks at the millions of flaws we’ve been tracking and shows estimates for
how long any particular flaw will remain open. It factors in both the flaws
that have been remediated and those that have yet to be fixed to give us
a more accurate measurement of expected closure rates over time.

57%

77%

68%

143 daysd 397 dayss290 daysaysys

Dynamic

SCA
Static

0%

25%

50%

75%

100%

2 years
TIME

PR
O

BA
BI

LI
TY

 F
LA

W
 IS

 S
TI

LL
 O

PE
N

0 6 months 1 year 18 months

HALF OF THE FLAWS from static analysis are closed
within the first 290 days, while half of the flaws from
dynamic analysis are closed in the first 143 days

77% of flaws in third-party libraries remain unfixed
after the FIRST THREE MONTHS, while only 57% of
flaws found through dynamic analysis are still around

This year’s research expands beyond just remediations for flaws found
through static analysis (we focused on that in previous years) and looks
at flaws discovered through dynamic analysis and SCA. Figure 14 shows
that dynamic flaws get fixed the fastest and SCA flaws the slowest, with
flaws from static analysis being fixed at a rate between those two.

Dynamic flaws get fixed the
fastest and SCA flaws the
slowest, with flaws from
static analysis being fixed at
a rate between those two.

Figure 14: Probability of flaw remaining open by scan type

THE PROGRESS WE’VE ALL MADE 33

Remediation efforts
have slid back a bit for
static scans. In 2017,
half-life to remediation
was just under 200 days,
now remediation has
slowed down to just
under 300 days.

Let’s focus on the horizontal
dashed line at 50 percent shown
in Figure 14. It represents how
long it may take to close about
half the flaws, or what we can
call the “half-life” of a flaw.

0

400

800

1200

H
AL

F-
LI

FE

Dynamic Analysis

2017 2018 2019 2020 2021

Static Analysis

2017 2018 2019 2020 2021

SCA

2017 2018 2019 2020 2021

It may seem absurd that it can be over a year before even half the flaws
identified through SCA are closed — especially when we see flaws found
through dynamic analysis lasting just under 5 months for the same half-life
metric. But what if we told you that’s actually a great improvement? Take a look
at Figure 15, which tracks that half-life metric over time. With that historical
perspective, flaws found in SCA show a dramatic improvement. Back in 2017,
it would take over three years to get to the 50 percent (half-life) closed point,
and that’s been driven down to what we see today: just over a year.

After looking at the SCA flaws and feeling optimistic that things are
improving, take a look at the static scans. It looks like remediation efforts
have slid back a bit from an all-time low around 2017 with a half-life of
just under 200 days. Currently, remediation has slowed down to just under
300 days. Part of the challenge here is that the competitive market demands
timely releases, and software development teams are forced to make difficult
tradeoffs between a timely delivery and risk. Some flaws may be left
unaddressed to meet deadlines.

If we want to track speed to remediation, half-life is a good metric, but there
is a challenge in relying on it as a complete measure: It doesn’t account for
all the flaws being fixed in a given time period. In order to measure just how
many flaws are being fixed in a window of time, we must look at the overall
capacity that development teams have for fixing flaws.

S
E
C
T
I
O
N

0
5

Figure 15: Half-life by scan type

VERACODE STATE OF SOFTWARE SECURITY REPORT 34

Capacity
for Flaw
Remediation
by Scan Type

To gauge capacity, we look at all the flaws facing a development team
in a given month and then see how many of those are fixed in that month.
Naturally, there are variations from application to application, but
Figure 16 captures the overall trend over the last five years.

The points in Figure 16 represent individual applications, and the lines
show the overall trend. Keep in mind that capacity here is looking at the
number of remediated flaws out of the total number of open flaws in a
given month. This gives us the percentage of flaws being fixed every month.
It’s good to see the remediation of both static flaws and SCA flaws in
any given month on the rise here even if the increase isn’t dramatic and
(according to Figure 15) it takes a little longer. The remediation of flaws found
with dynamic analysis has been bouncing around a bit, but we should see it
stabilize as we get more data.

Dynamic Analysis Static Analysis SCA

25%

50%

75%

100%

M
O

N
TH

LY
 C

AP
AC

IT
Y

2017 2018 2019 2020 2021 2017 2018 2019 2020 2021 2017 2018 2019 2020 2021

Figure 16: Monthly capacity for flaw remediation by scan type

Overall, the signs here give us hope that there is a focus on
application security and that added attention is having a positive
impact on the security of our applications.

THE PROGRESS WE’VE ALL MADE 35

Where Do We
Go From Here?

As we wrap up this whirlwind
tour of the evolution of software
security over time, let’s take a
look at the future and think about
what practices might be next in
improving application security.

THE PROGRESS WE’VE ALL MADE 35

S
E
C
T
I
O
N 06

VERACODE STATE OF SOFTWARE SECURITY REPORT 36

Most Organizations Using Veracode
Security Labs Are Fixing Flaws Faster
Here at Veracode, we don’t
want to simply point out, “Hey,
there’s a flaw here, you should
fix it” — we also want to help
developers better understand
how to fix those flaws and
avoid creating new ones in
the future. To that end, we’ve
established Veracode Security
Labs to give developers
hands-on experience fixing
common flaws.

0%

5%

10%

15%

TIME PER LESSON

P
ER

CE
N

T
O

F
A

CC
O

U
N

TS

30 minutes 1 hour 1.5 hours 2 hours 2.5 hours

Figure 17: Time spent learning in Veracode Security Labs

Before you roll your eyes, we want you to know this isn’t just a pile of training
videos that developers are expected to slog through. Veracode Security
Labs lessons are fully realized example applications, written in a variety of
languages, with real flaws. The lessons help developers understand the flaws
by giving them hands-on experience actually exploiting them. Using real
code, developers are led through examples of specific coding flaws. They then
develop and execute exploits to build their intuition about security flaws.
And more importantly, developers write the patches that fix the flaws, giving
them valuable experience when they are alerted to flaws in their own code.

This is starting to sound like a marketing pamphlet, but we promise it’s not.
We want to know if this type of system can help developers fix flaws faster
and help prevent the creation of flaws in the future. Most lessons are short,
averaging less than an hour to complete.

THE PROGRESS WE’VE ALL MADE 37

But do these efforts actually
make a difference in the
ability to fix flaws?

0%

25%

50%

75%

100%

0 100 200 300

DAYS SINCE STATIC FLAW FOUND

PE
RC

EN
T

O
F

FL
AW

S
ST

IL
L

O
PE

N

No Security Labs
courses completed

Some Security Labs
courses completed

2 month
difference

Organizations with Veracode
Security Labs Training

Organizations without Veracode
Security Labs Training

110 170
days it takes to fix
approximately 50% of flaws

days it takes to fix
approximately 50% of flaws

We looked at organizations that had completed some number of lessons and
compared the flaws that were found in their applications before the lessons
were completed to those that were found after.

Good news: Figure 18 indicates that flaws found after Veracode users
completed at least one lesson were fixed faster than those found when
developers had no such training. Specifically, 50 percent of flaws were fixed
within approximately 110 days by those with training, and 170 days without —
a two-month difference on average!

S
E
C
T
I
O
N

0
6

Figure 18: Probability of flaw remaining open by training history

VERACODE STATE OF SOFTWARE SECURITY REPORT 38

So Veracode Security Labs training helps developers
fix flaws more quickly, but does it prevent the
creation of new ones?

To examine this:

1 We narrowed things down
to users who had scanned
applications both before
and after completing our
e-learning courses.

2 We then examined what
fraction of scans had flaws.

Figure 19 shows that for most languages, the percentage of static
scans that find flaws is reduced after some lessons are completed.
For JavaScript, this reduction is nearly 20 percent, while other languages
see a more modest reduction. There seems to be a slight increase for
C++, but it should be noted that it is not statistically significant, nor is
the small decline in PHP.

These results don’t point to this kind of training as a security cure-all,
but they do indicate that training benefits developers. This might seem
obvious: If developers have an opportunity to see flaws in a safe, guided
environment, they’ll be better equipped to fix things “in the wild.” But
for research reports like this, we don’t like to call anything “obvious”
until we’ve seen the data.

Of course there are some caveats to these early results. Given that an
organization likely has some inclination toward secure development to
even engage Veracode, a larger effect might be seen for developers who
never considered security scanning before. We are also painting with an
extremely broad brush here.

In the future, breakdowns of the types of lessons and the types of
real flaws fixed would give us a better understanding of where this
type of hands-on experience works best.

VERACODE STATE OF SOFTWARE SECURITY REPORT 38

THE PROGRESS WE’VE ALL MADE 39

77.1%

57.8%

JavaScript

96.5% 95.3%

PHP

50.3%

37.9%

Python

83.7%

77.8%

.NET

87.9%
92.9%

C++

90.6%

84.0%

Java

No Lessons
Completed

Some Lessons
Completed

No Lessons
Completed

Some Lessons
Completed

40%

60%

80%

100%

40%

60%

80%

100%

40%

60%

80%

100%

PE
RC

EN
T

O
F

SC
AN

S
FI

N
D

IN
G

 F
LA

W
S

NOT STATISTICALLY SIGNIFICANT

STATISTICALLY SIGNIFICANT

S
E
C
T
I
O
N

0
6

Figure 19: Flaws found before and after training

THE PROGRESS WE’VE ALL MADE 39

VERACODE STATE OF SOFTWARE SECURITY REPORT 40

Conclusions

In some ways, it’s staggering to look back at the history of
software development through the lens of Veracode’s data.
For some of the results in this report, we were able to look
back nearly 16 years to the time the first applications were
scanned by Veracode customers. As new best practices,
different threats, and better capabilities have been
developed, we’ve gotten to take a look at more detailed
versions of the evolution of application security.

VERACODE STATE OF SOFTWARE SECURITY REPORT 40

07

S
E
C
T
I
O
N

THE PROGRESS WE’VE ALL MADE 41

Agile development of small, modular applications
has eaten the world.

We’ve seen an explosion in the number of applications being scanned.
Many are single languages, and applications in certain languages are
getting smaller. Maybe those folks at Bell Labs had some good ideas
back in the late 1970s.2 We’ve seen developers move from scanning their
applications once a quarter to once a day, as well as expand their use
of different scanning technologies.

Given that we know that more scanning using multiple tools means faster
fix times and less security debt,3 this shift can only be viewed as good for
the future of application security. It’s yet to be seen whether the pendulum
of history will swing back to monolithic applications and waterfall
development, but that doesn’t seem likely now.

Free and open-source code will continue to be
a blessing and a curse for developers.

We see no signs that the use of third-party libraries has changed
dramatically, or even the libraries developers are using. Developers appear
to be using fewer libraries with known flaws, and that’s cause for optimism.

2 The philosophy of the UNIX operating system has been highly influential throughout computing. Some innovations it can take credit for are things like hierarchical file
systems, multi-tasking, and multi-user systems. Here we refer to the idea that systems should be composed of small (even trivial), interchangeable programs that can
easily communicate. When these programs are composed they are capable of exceedingly complex tasks that might otherwise be difficult to achieve in a monolithic
program. We are seeing a reimagining of this idea here, with developers changing focus from large monolithic applications that do a wide variety of tasks to smaller
composable parts. Read more: Ritchie, Dennis M., and Ken Thompson. “The UNIX time‐sharing system.” Bell System Technical Journal 57, no. 6 (1978): 1905-1929.
Kernighan, Brian W., and John R. Mashey. “The UNIX™ programming environment.” Software: Practice and Experience 9, no. 1 (1979): 1-15.

3 Veracode State of Software Security, volumes 9, 10, and 11.

So standing here in 2022,
what can we say we’ve learned?

VERACODE STATE OF SOFTWARE SECURITY REPORT 42

Applications are, slowly but surely,
getting more secure.

What is perhaps most heartening throughout this analysis is that,
nearly across the board, we’ve seen steady progress toward more secure
applications. While some subsets of flaws have increased in prevalence
over time, the trend has generally been downward. This is impressive,
given that the capacity for and speed of fixes hasn’t necessarily increased.
We’re hopeful this trend will carry on and that the future will continue
to look bright.

New tools will continue to help improve
the application security landscape.

In the past, we’ve noted that using different types of scanning means that
developers will fix all types of flaws faster and more completely. Having
these types of tools built into continuous integration pipelines and IDEs
will only speed developer adoption. In addition to that, tools like Veracode
Security Labs lessons may be even more impactful in helping developers
better understand the origin of security flaws and how to fix them or
prevent them from showing up in the first place.

THE PROGRESS WE’VE ALL MADE 43

Our methodology for data analysis
diverged slightly from that used
for earlier volumes of the State
of Software Security. In previous
years, we would specifically
focus on applications that were
under active development from
a 12-month window.

This year, we wanted to get
a longer-term view, so the
core data represents the full
historical data from Veracode
services and customers.

Appendix: Methodology
This accounts for a total of:

• 592,720 applications that used all scan types

• 1,034,855 dynamic analysis scans

• 5,137,882 static analysis scans

• 18,473,203 software composition analysis scans

All those scans produced:

• 42 million raw static findings

• 3.5 million raw dynamic findings

• 6 million raw software composition analysis findings

The data represents large and small companies, commercial software
suppliers, software outsourcers, and open source projects.4 In most analyses,
an application was counted only once, even if it was submitted multiple times
as vulnerabilities were remediated and new versions uploaded.

For software composition analysis, each application is examined for
third-party library information and dependencies. These are generally
collected through the application’s build system. Any library dependencies
are checked against a database of known flaws.

The report contains findings about applications that were subjected to static
analysis, dynamic analysis, software composition analysis, and/or manual
penetration testing through Veracode’s cloud-based platform. The report
considers data that was provided by Veracode’s customers (application
portfolio information such as assurance level, industry, application origin)
and information that was calculated or derived in the course of Veracode’s
analysis (application size, application compiler and platform, types of
vulnerabilities, and Veracode levels — predefined security policies based
on the NIST definitions of assurance levels).

THE PROGRESS WE’VE ALL MADE 43

4 Here we mean open source developers who use Veracode tools on applications in the same way closed
source developers do. This is distinct from the software composition analysis presented in the report.

S
E
C
T
I
O
N

0
7

VERACODE STATE OF SOFTWARE SECURITY REPORT 44

A Note on Mass Closures

While preparing the data for our analysis,
we noticed several large single-day closure
events. While it’s not strange for a scan to
discover that dozens, or even hundreds,
of findings have been fixed (50 percent
of scans closed fewer than three findings;
75 percent closed fewer than eight), we did
find it strange to see some applications
closing thousands of findings in a
single scan.

Upon further exploration, we found many
of these to be invalid. These large collections
of flaws were both added and removed in
single scans: Developers would scan entire
filesystems, invalid branches, or previous
branches, and when they would rescan the
valid code, every finding not found again
would be marked as “fixed.”

These mistakes had a large effect:
The top one-tenth of 1 percent of the
scans (0.1 percent) accounted for almost
a quarter of all the closed findings.

These “mass closure” events have
significant effects on measuring flaw
persistence and time to remediation
and were ultimately excluded from
the analysis.

VERACODE STATE OF SOFTWARE SECURITY REPORT 44

THE PROGRESS WE’VE ALL MADE 45

VERACODE STATE OF SOFTWARE SECURITY REPORT A

Copyright © 2022 Veracode, Inc. All rights
reserved. Veracode is a registered trademark of
Veracode, Inc. in the United States and may be
registered in certain other jurisdictions. All other
product names, brands or logos belong to their
respective holders. All other trademarks cited
herein are property of their respective owners.

Veracode is the leading AppSec partner
for creating secure software, reducing the
risk of security breach, and increasing
security and development teams’
productivity. As a result, companies using
Veracode can move their business, and
the world, forward. With its combination
of process automation, integrations,
speed, and responsiveness, Veracode
helps companies get accurate and reliable
results to focus their efforts on fixing,
not just finding, potential vulnerabilities.

Veracode serves thousands of customers
worldwide across a wide range of
industries. The Veracode solution has
assessed more than 53 trillion lines of
code and helped companies fix more
than 71 million security flaws.

Learn more at www.veracode.com,
on the Veracode blog and on Twitter.

https://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode

