
A Smarter Way to Secure Apps: The Power of Veracode Fix 1

A Smarter Way to Secure
Apps: The Power of
Veracode Fix

Whitepaper

A Smarter Way to Secure Apps: The Power of Veracode Fix 2

In today’s digital landscape, managing software
vulnerabilities is a challenge. Veracode Fix,
powered by AI, streamlines remediation, reduces
MTTR, and enhances security. This whitepaper
explores its value amid growing security risk and

complexities.

Introduction

In today’s fast-paced digital landscape, application
development teams face the daunting challenge
of managing software vulnerabilities effectively.
The growing backlog of security flaws, commonly
referred to as “security debt,” poses significant
risks to organizations, hindering agility and
impeding software velocity. To address this critical
issue, Veracode Fix emerges as a game-changing
solution, leveraging cutting-edge AI technology to
streamline the remediation process and enhance
the developer experience. This whitepaper
explores the value of Veracode Fix for application
development teams and application security
managers, highlighting its ability to reduce Mean
Time to Remediate (MTTR), mitigate breach risks,
and optimize software security outcomes.

Streamline Vulnerability Remediation

The growing complexity of modern software
development practices, coupled with the evolving
landscape of cybersecurity threats, presents
a significant challenge for security teams.
Understanding and effectively addressing security
risks have become increasingly intricate tasks,
and staying ahead of compliance expectations
has never been more demanding. As traditional
remediation processes frequently suffer from
extended timelines, high costs, and inefficiencies,
security teams find themselves dealing with a
growing backlog of vulnerabilities and frustrated
developers.

Traditional
remediation
processes
frequently
suffer from
extended
timelines, high
costs, and
inefficiencies

A Smarter Way to Secure Apps: The Power of Veracode Fix 3

Exploring the Multitude of Methods for Producing Insecure Code

In the modern development landscape, the proliferation of tools and methods for generating code
has greatly expanded the avenues through which developers can produce applications.

While these tools offer remarkable efficiency and flexibility, they also introduce new vectors for
creating potentially insecure code. Developers now have access to a variety of methods ranging
from automated code generators to sophisticated machine learning models. Each of these
methods, while innovative and powerful, carries its own set of risks and considerations, especially
in the context of security. It’s crucial for developers to be aware of these potential vulnerabilities
as they leverage these advanced tools to create and implement software solutions.

Code Generators
Tools that automatically generate code
based on specific inputs or templates.
Examples include Swagger Codegen,
Yeoman, and SQLalchemy’s Alembic.

Library and Framework Usage
Implementing libraries and frameworks
which provide
pre-written code for common
tasks. Examples are React.js for UI,
TensorFlow for machine learning, and
Bootstrap for front-end development.

Large Language Models (LLMs)
Trained on extensive web content,
assist developers in code generation.
However, this practice entails potential
legal risks. The generated code might
inadvertently mirror code from a
licensed library, leading to unintentional
license violations.

Software Composition
Building applications by assembling
pre-existing components. Examples
include Docker containers, npm
packages in Node.js, and Maven
dependencies in Java.

Automated Refactoring Tools
Tools that automatically refactor
existing code to improve its structure
without changing its behavior.

Some examples include:

A Smarter Way to Secure Apps: The Power of Veracode Fix 4

Navigating the Challenges of
Open-Source Adoption and Secure
Development

Embracing open-source libraries and
freely utilizing code from source code
repositories, even in environments where
malicious actors or weak coding practices
are prevalent, presents a dual challenge.
These common developer behaviors not only
introduce security risks but also give rise to
concerns related to license infringements.
In this intricate landscape, security teams
must implement strategies encompassing
automation, collaboration, continuous
learning, and risk prioritization

to adeptly navigate and manage security and
compliance expectations while staying in
step with the ever-evolving realm of software
development.

The Veracode State of Software Security
Report found that the average time to fix a
security finding in cloud native languages is
56 days, which is in line with reports from
other industry surveys. If that’s not concerning
enough, our report revealed that over 74% of
applications contained at least one security
flaw, with nearly 20% of applications contained
a high severity flaw.

This data shows that C and C++ are the most
vulnerable languages, accounting for over 75%
of all reported vulnerabilities. Java and Python
are also relatively vulnerable, accounting
for about 17% of all reported vulnerabilities.
JavaScript and PHP are the least vulnerable
languages, accounting for about 8% of all
reported vulnerabilities.

Any
Flaws

P
er

ce
n

t
o

f
A

p
p

li
ca

ti
o

n
 (O

ve
r

la
st

 1
2

 M
o

n
th

s)

OWASP
Top 10

CWE
Top 25

High
Severity

74.1%
69.7%

56.9%

19.2%

Security teams must
implement strategies
encompassing
automation,
collaboration,
continuous learning,
and risk prioritization

A Smarter Way to Secure Apps: The Power of Veracode Fix 5

These figures speak more to the time and
effort required to resolve security flaws than
to the priority of doing so. In many cases,
developers are confronted with a list of flaws
to address in code that they may not have
authored and lack the specific security training
to be able to easily address the issues. It takes
significant time to interpret a finding, research
a remediation technique, and then adapt it to
the existing code.

Veracode Fix revolutionizes this process by
harnessing the power of Generative AI to
generate automated fixes for security flaws.
By training the GPT model on carefully curated
data and using a comprehensive database
of reference patches written by Veracode
security researchers, Veracode Fix customizes
best practice solutions directly to client
codebases.

This AI-augmented approach significantly
reduces MTTR for prevalent vulnerabilities in
Java, C#, and JavaScript/TypeScript, enabling
developers to remediate flaws in minutes
rather than months. By building a Responsible-
by-Design AI solution, Veracode can ensure
the accuracy, safety, and consistency that
application security requires, while delivering
the flexibility and customization that
Generative AI can provide.

2.9%
PHP

5.0%
JavaScript

7.2%
Python

10.5%
Java

24.1%
C++

50.3%
C

Veracode Fix
revolutionizes
this process
by harnessing
the power of
Generative AI
to generate
automated
fixes for
security flaws.

A Smarter Way to Secure Apps: The Power of Veracode Fix 6

Enhancing the Developer
Experience

Veracode Fix is designed to alleviate the
cognitive load on developers, empowering
them to focus on creating value rather than
constantly revisiting old code. By covering
a substantial portion of open findings in
codebases, Veracode Fix reduces the risk of
exploitable vulnerabilities.

For example, in controlled tests, the
remediation time for a CWE-117 vulnerability
in a Java application was reduced from 35
minutes to just 3 minutes using Veracode Fix.
This efficiency and ease of use significantly
enhance the developer experience, fostering
productivity and job satisfaction. Developers
can move away from the onerous task of
interpreting security findings then researching
and testing security fixes to reviewing and
approving AI suggested fixes.

Mitigating Breach Risks

For a Veracode Fix customer with even a
small security backlog of 2000 open flaws
this represents a potential unlocking of over
6 months of developer effort (see how much
time your organization can save with our ROI
calculator)

As well as reducing the toil of correcting
detected security mistakes, developers can
use Veracode to create less of them. Using
a combination of Veracode Static Analysis,
Veracode Software Composition analysis,
Veracode Container security, and Veracode Fix
early in the development lifecycle, developers
can detect and resolve code security, container
and IaC issues before committing code. The
result: Cleaner code into the CI/CD pipeline,
improved delivery velocity, and a reduced
security backlog.

The presence of unaddressed vulnerabilities
poses a significant risk to organizations,
increasing the likelihood of data breaches
and system compromises. Veracode Fix’s
comprehensive coverage of common
vulnerabilities in Java, C#, and JavaScript/
TypeScript significantly lowers the risk
of data breaches. By addressing 92% of
vulnerabilities[1] in Java, 98% in JavaScript/
TypeScript, and 86% in C#, using Veracode
Fix to reduce the time to remediation can
substantially reduce the risk of data breaches.
This reduction translates into substantial cost
savings, considering the average cost of a data
breach is $4.45 Million USD according to IBM.

Veracode Fix
is designed to
alleviate the
cognitive load
on developers,
empowering
them to focus on
creating value

A Smarter Way to Secure Apps: The Power of Veracode Fix 7

Efficacy of Veracode Fix Across
Programming Languages

To underscope the unique value
proposition of Veracode Fix, consider
the following data indicating the
percentage of issues it can address by
programming language:

Veracode Fix is particularly effective in
resolving issues in java and C#, while also
significantly addressing challenges in
Python, JavaSript, and PHP.

Veracode Fix is equipped to
tackle a variety of critical
issues,including:

SQL Injection

Cross-Site Scripting (XSS)

Insecure Direct Object References
(IDORs)

Commnand Injection

Path Traversal

Broken Authentication and Session
Management

Exposure of Sensitive Data

Use of Insecure Cryptographic
Algorithms

Injection Flaws

Cross-Site Request Forgery (CSRF)

Java
80%

C#
75%

Python
65%

JS
60%

PHP
55%

A Smarter Way to Secure Apps: The Power of Veracode Fix 8

Efficacy of Veracode Fix Across
Programming Languages

Percent of Veracode Static Analysis Java
findings with Veracode Fix CWE coverage.

C
W

E
 1

1
7

C
W

E
 8

0

C
W

E
 7

3

C
W

E
 4

0
4

C
W

E
 2

0
1

C
W

E
 5

9
7

C
W

E
 1

5
9

C
W

E
 2

0
9

C
W

E
 8

9

C
W

E
 3

3
1

Top 10 Java CWE Static Analysis
Findings

Conclusion

Veracode Fix emerges as a critical tool in the arsenal of application development teams and
application security managers. By seamlessly integrating into the development workflow and
offering AI-driven remediation suggestions, Veracode Fix enhances developer productivity,
reduces security debt, and mitigates breach risks. As organizations strive to balance speed,
innovation, and security in an increasingly digital world, Veracode Fix plays a pivotal role in
transforming the vulnerability remediation process. Embrace Veracode Fix and unlock the
full potential of your application security strategy.

74%

A Smarter Way to Secure Apps: The Power of Veracode Fix 9

Author
Brian Roche, CPO Veracode

Learn more at www.veracode.com, on the Veracode blog
and on Twitter.

Copyright © 2024 Veracode, Inc. All rights reserved.
Veracode is a registered trademark of Veracode, Inc. in
the United States and may be registered in certain other
jurisdictions. All other product names, brands or logos belong
to their respective holders. All other trademarks cited herein
are property of their respective owners.

https://www.veracode.com/
https://www.veracode.com/blog
https://x.com/Veracode?s=20

