
$1 Million
more than

The Vulnerability

Race Condition

Race condition attacks are relatively difficult to engineer,
but once an intruder breaches a system, it’s possible to
alter, manipulate, or steal data, change privileges, insert
malicious code, unleash a denial of service attack, and
deactivate security controls.

A race condition vulnerability occurs when a system
that’s designed to handle tasks in a specific sequence
is forced to perform two or more operations at the
same time. Without proper controls, different processes
may interfere with each other and create an opening
for an attack.

of applications
have a race
condition
vulnerability
on initial scan.
Source: SOSS v11	

8.5%The Risks

Example Breach

In one high-profile case, the FBI reported that
attackers used this methodology to steal more than
$1 million from Citibank using cash advance ATM
kiosks at casinos located in California and Nevada.
The attackers sent near identical queries within a
60-second time window.

VULNERABILITY DEC ER

https://www.veracode.com/state-of-software-security-report

Race condition attacks are preventable with secure
coding practices. It’s critical to scan and review code
for race condition vulnerabilities. This includes the
use of static analysis.

Join the Veracode Community
community.veracode.com

Nobody writes perfect code the
first time around. You can avoid
vulnerabilities and prevent
breaches when you:

�Get training in secure coding
best practices through on-demand
eLearning courses, in-person
security consultations, and
professional development
certifications and conferences.

Scan early and often to detect
flaws while you code. Use application
security tools that allow you to scan
small batches of code instantaneously,
and provide remediation guidance
within your development workflow.

This is an example of a race
condition vulnerability:

/* vulp.c */
#include
#include
#define DELAY 10000
int main()
{
char * fn = “/tmp/XYZ”;
char buffer[60];
FILE *fp;
long int i;
/* get user input */
scanf(“%50s”, buffer);
if(!access(fn, W_OK)){
/* simulating delay */
Laboratory for Computer Security Education 2
For (i=0; i < DELAY; i++){
int a = i^2
}
fp = fopen(fn, “a+”);
fwrite(“\n”, sizeof(char), 1, fp);
fwrite(buffer, sizeof(char), strlen(buffer), fp);
fclose(fp);
}
else printf(“No permission \n”);

Prevention & Remediation

Recommendations

Download the Secure Coding Best Practices Handbook

https://community.veracode.com/s/
https://info.veracode.com/secure-coding-best-practices-hand-book-guide-resource.html

