
Insecure Open
Source Components

Open source and commercial, third-party components are
the building blocks of applications, but developers frequently
don’t know which components are in their applications, making
it difficult to update components when new vulnerabilities are
discovered. That leaves applications vulnerable to attackers
who can exploit an insecure component to take over the server
or steal sensitive data.

The Vulnerability

Open source code presents all the same risks as code developed in-house, but it can be
much more difficult to maintain visibility into what components you’re using and where.
This can lead to vulnerabilities in components remaining hidden for a long time.

of the typical
Java application is
made up of open
source libraries.
Source: SOSS v11

97%

The Risks

Example Breach

Attackers exploited a critical vulnerability in the Apache
Struts 2 library to access data from the Canada Revenue
Agency’s web server, putting taxpayers at risk of identity
theft. The same vulnerability has been linked to the
Equifax breach that exposed data of 145 million consumers.

VULNERABILITY DEC ER

https://www.veracode.com/state-of-software-security-report

Preventing vulnerabilities in open source components
requires vigilance in maintaining an inventory of all the
components you’re using, and updating those components
when new vulnerabilities are discovered. The following
recommendations from OWASP can help you reduce risk.

Get training in secure coding best practices, through
on-demand eLearning courses, in-person security
consultations, and professional development certifications
and conferences.

Use application security tools that integrate with your IDE,
allow you to scan small batches of code instantaneously,
and provide remediation guidance while you code.

Remove unused dependencies,
unnecessary features, components,
files, and documentation.

�Only obtain components from
official sources over secure links.

Continuously inventory the versions
of both client-side and server-side
components and their dependencies.

Continuously monitor sources like
CVE and NVD for vulnerabilities
in the components.

Subscribe to email alerts about
vulnerabilities in the components
you use.

Avoid using libraries or components that
are not maintained with regular updates.

Use software composition analysis tools
to automate the process of identifying
components with known vulnerabilities.

Prevention & Remediation

Recommendations

Download the Secure Coding Best Practices Handbook

Join the Veracode Community
community.veracode.com

https://www.owasp.org/index.php/Component_Analysis#Recommendations
https://info.veracode.com/secure-coding-best-practices-hand-book-guide-resource.html
https://community.veracode.com/s/

