
State of
Software
Security
Flaw Frequency
by Language

VOLUME 11

Veracode State of Software Security: Volume 1101

These trends not only provide a window into the risks that development and
security teams face regularly, but also shed light on the riskiest vulnerabilities
and languages that developers should keep an eye on while they work.

Today, it’s critical that developers are able to write code faster and more efficiently
in order to keep up with the demands of modern software development, and though
it’s easier than ever to find and remediate flaws with the right application security
(AppSec) tools, development teams still face language-specific challenges that
can turn into roadblocks. By examining flaw frequency trends in various common
languages, developers have a better understanding of the everyday risks they face
while coding and can use that knowledge to get ahead of those flaws before they
become a problem.

In Volume 10 of State of Software Security, one of our focuses was on flaw
prevalence among the most common languages. We found that some languages
are more susceptible to certain types of flaws than others, which is consistent with
what we know about different platforms. Buffer overflow and buffer management
errors are common issues in C++, but the built-in buffer management capabilities
of higher level languages (like .NET and JavaScript) mean those flaws tend to be
rare in those applications.

In this iteration of data from State of Software Security Volume 11, we see that
the distinctions across languages still hold true: 59 percent of C++ applications
have high (and very high) severity flaws, compared to just 9 percent of JavaScript
applications. The script is a bit flipped around with Java, as only 24 percent had
critical flaws this time around (Volume 10 looked for at least one flaw, so it’s not
a straight comparison with the below figure, which focuses on just critical flaws).

�Volume 11 of
Veracode’s State
of Software Security
report is forward-
thinking, digging
into the trajectory
of software security
trends and backed
by data from over:

130,000
 APPLICATION SCANS

8.6%

9.6%

23.8%

25.0%

52.6%

59.3%

JavaScript

Python

Java

.Net

PHP

C++

 HIGH-SEVERITY FLAWS

59 percent of C++ applications have high (and very high) severity flaws,
compared to just 9 percent of JavaScript applications. It’s flipped with Java,
as only 24 percent had critical flaws this time around.

Figure 1: Applications with
high-severity flaws by language

Veracode State of Software Security: Volume 1102

The interesting
thing about the
language breakdown
was the fact that
the most common flaw
type was different
for each language.

The most common flaw type in .NET applications was information leakage, while
it was Cross-Site Scripting (XSS) for PHP, and CRLF injection for Java applications.
The first intersection comes in the second most common flaw, with code quality
appearing for both .NET and Java applications. In fact, there are several points
of overlap for .NET and Java applications, which makes sense with the similarities
between the platforms.

While the language breakdown is useful, there is a significant risk with this kind of
analysis as it can artificially elevate certain flaw types. Cross-Site Scripting is also
the most common flaw in JavaScript applications, but that applies to less than a
third of applications scanned. So it is a little problematic to put it on the same level
of severity as PHP, where XSS is found in three-quarters of the scanned applications.

 THE HEAT MAP PROVIDES SOME INDICATION OF THE FREQUENCY OF FLAWS:

10

9

8

7

6

5

4

3

2

1

.Net C++ PHP PythonJava JavaScript

Cross-Site
Scripting (XSS)

74.6%

Cryptographic Issues
71.6%

Error Handling
66.5%

Directory Traversal
64.6%

CRLF Injection
64.4%

Information Leakage
63.3%

Information Leakage
62.8%

Untrusted Initialization
61.7%

Code Quality
54.3%

Code Quality
53.6%

Information Leakage
51.9%

Insu�cient
Input Validation

48.8%

Code Injection
48.0%

Encapsulation
48.0%

Bu�er
Management Errors

46.8%

Cryptographic Issues
45.9%

Numeric Errors
45.8%

Command or
Argument Injection

45.4%

Credentials
Management

44.3%

Cryptographic Issues
43.3%

Directory Traversal
41.9%

Code Quality
40.3%

Cryptographic Issues
40.2%

Code Quality
36.6%

Directory Traversal
35.4%

Bu�er Overflow
35.3%

Cryptographic Issues
35.0%

Cross-Site
Scripting (XSS)

31.5%

Directory Traversal
30.4%

Race Conditions
30.2%

Credentials
Management

29.6%

CRLF Injection
28.4%

Credentials
Management

26.5%

Insu�cient
Input Validation

25.7%

CRLF Injection
25.3%

Cross-Site
Scripting (XSS)

25.2%

Insu�cient
Input Validation

 25.2%

Potential Backdoor
25.0%

Cross-Site
Scripting (XSS)

24.0%

Information Leakage
22.7%

Untrusted Initialization
22.4%

Cross-Site
Scripting (XSS)

22.2%

Cryptographic Issues
20.9%

Directory Traversal
20.6%

Credentials
Management

19.9%

Encapsulation
18.1%

CRLF Injection
16.4%

API Abuse
16.2%

Authentication Issues
14.9%

SQL Injection
12.7%

Encapsulation
12.4%

Directory Traversal
11.5%

Insu�cient
Input Validation

8.3%

Information Leakage
8.3%

Server Configuration
8.1%

Code Quality
7.6%

Credentials
Management

7.2%

Dangerous Functions
6.9%

Authorization Issues
6.8%

Authorization Issues
4.0%

Figure 2: CWE flaw types in applications in various languages

Veracode State of Software Security: Volume 1103

The frequency of
flaw types varies by
language, but there
is still significant
overlap in the flaws
that showed up across
different languages.

The worm map below helps highlight the prevalence of specific flaws by language.
Information leakage was the highest for .NET and PHP applications, but not so
much a problem for Python. As mentioned earlier, buffer management errors are
big issues only for C++ applications, but not many web applications are written
in C++, so web-related flaws such as XSS, are clearly not as common.

The similarity between scripting languages JavaScript and Python is evident in
this chart. Untrusted initialization flaws are pretty negligible for most applications
but are very common in PHP.

 UNTRUSTED INITIALIZATION

Untrusted initialization flaws are pretty
negligible for most applications but are
very common in PHP — something for
developers to keep an eye on.

Bu�er Management Errors

Code Quality

Credentials Management

CRLF Injection
Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Error Handling

Information Leakage

Insu�cient Input Validation

Untrusted Initialization

Bu�er Management Errors

Code Quality

Credentials Management

CRLF Injection
Cross-Site Scripting (XSS)

Cryptographic Issues
Directory Traversal

Error Handling

Information Leakage

Insu�cient Input Validation

Untrusted Initialization

C++Python PHPJavaScriptJava.Net

0%

20%

40%

60%

 JAVASCRIPT + PYTHON

The similarity between scripting
languages JavaScript and Python
is evident in this chart.

Figure 3: CWE flaw types in
applications in various languages

READ THE FULL REPORT AT VERACODE.COM/SOSS

Copyright © 2020 Veracode, Inc. All rights reserved. All other brand names, product names, or trademarks belong to their respective holders.

Veracode is the leading AppSec partner for creating secure software, reducing the risk of security breach and increasing security and development
teams’ productivity. As a result, companies using Veracode can move their business, and the world, forward. With its combination of automation,
integrations, process, and speed, Veracode helps companies get accurate and reliable results to focus their efforts on fixing, not just finding,
potential vulnerabilities. Veracode serves more than 2,500 customers worldwide across a wide range of industries. The Veracode cloud platform
has assessed more than 14 trillion lines of code and helped companies fix more than 46 million security flaws.

veracode.com Veracode Blog Twitter

For more insight into the trends and challenges in secure application
development, download the full State of Software Security Report.

It’s unrealistic to expect that developers will
write perfect code every time they work on an
application, but it’s critical that they’re enabled
to find and fix flaws on a schedule that won’t
create more of a bottleneck.

Implementing secure coding practices and increasing developer
know-how for flaws by language can help ensure that the security
of your applications (and your sensitive data) is where it needs
to be to keep up with modern software development.

http://veracode.com/soss
http://veracode.com
http://veracode.com/blog
http://twitter.com/Veracode

