
Insecure Crypto
Proper encryption is notorious for its difficult
implementation, but it’s essential to strong
application security practices. Cryptographic
flaws include using broken crypto algorithms,
improperly validating certificates, storing
sensitive information in cleartext, and
employing inadequate encryption strength.

The Vulnerability

of applications
have cryptographic
issues on initial scan.
Source: SOSS v11

63.7%

Secret

Insecure crypto can lead to stolen or destroyed data, including some of your most
sensitive information, such as personally identifiable information of customers
or employees (e.g., Social Security numbers, or bank or credit card details).

The Risks

Example Breach

A malicious hacktivist leaked The Panama Papers
from Panamanian law firm Mossack Fonseca.
The document dump was made possible by an
SSL cryptographic flaw, known as the DROWN
attack, in the firm’s customer-facing website.

VULNERABILITY DEC ER

https://www.veracode.com/state-of-software-security-report

Cryptographic vulnerabilities are
preventable with secure coding
practices. Most major languages
inherently support good cryptographic
practices, and concerns over incorrect
implementation typically arise only on
a case-by-case basis.

 Get training in secure coding best practices,
through on-demand eLearning courses, in person
security consultations, and professional development
certifications and conferences.

 Scan early and often to detect flaws while you code.
Use application security tools that allow you to scan
small batches of code instantaneously, and can provide
remediation guidance within your development workflow.

Join the Veracode Community
community.veracode.com

How to generate pseudo-random data for general cryptographic use

// returns an unseeded instance of default RNG algorithm based on most preferred provider from list of providers
configured in java.security

// On Unix like system, NativePRNG algorithm, configured with seeding from non-blocking entropy source, is returned.

// On Windows, SHA1PRNG algorithm, which can be self-seeded or explicitly seeded is returned.

SecureRandom secRan = new SecureRandom();
byte[] ranBytes = new bytes[20];
secRan.nextBytes(ranBytes);

 // since, there is no setSeed method called before a call to next* method, self-seeding occurs

Prevention & Remediation

Recommendations

Example: In Java 8, the SecureRandom class

provides CSPRNG functionality. The most OS-agnostic

way to generate pseudo-random data that’s suitable

for general cryptographic use is to rely on the OS

implementation’s defaults, and never to explicitly seed

it (i.e., don’t use the setSeed method before a call to

next* methods). You’ll find more information here.

Download the Secure Coding Best Practices Handbook

https://community.veracode.com/s/
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng
https://info.veracode.com/secure-coding-best-practices-hand-book-guide-resource.html

