
The Life and Times of
Third-Party Software

Open Source Edition

STAT E O F S O F T W A R E S ECU R I T Y:
V O LU M E 11

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

01

CO
N

TE
N

TS

SECTION ONE

02 Introduction
04 Key insights

SECTION TWO

05 Popular Libraries

SECTION THREE

09 Library Selection
10 Library selection process

11 Library evaluation and problems

13 Most libraries are never updated

15 How long do they stick around
before being updated?

SECTION FOUR

16 Fixing Vulnerabilities
19 Severity

20 Dependency type

21 Vulnerability type

22 Language

23 Developer resources

SECTION FIVE

25 Suggested Updates
26 Most updates are still small

30 Update chains

SECTION SIX

33 Conclusion
34 Appendix: Methodology

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

0 2

But that foundation is not a metaphorical solid block
of cement on which to construct our software edifice.
While Randall Monroe is rarely wrong, it may not even
be the precarious pile of blocks conceived in one of his
comics,1 but perhaps a shifting pile of sand and gravel.

If you are reading this report,
you probably already know
that third-party software is
the foundation of nearly all
modern applications.

1 xkcd.com/2347

How does a developer navigate the shifting sands
of the third-party library landscape? Last year, we
looked at a snapshot of library usage in applications,
covering how many libraries were used and what
types of vulnerabilities were present in those libraries.
We gave practical advice on what the fixes to those
vulnerabilities looked like and had some heartening
news — that if developers stay on top of updates,
that will address most problems.

SECTION ONE

http://xkcd.com/2347

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
IN

TR
O

D
U

C
TI

O
N

0 3

This year, again in partnership with the
Cyentia Institute, we want to look beyond
a point-in-time snapshot, examining the
dynamics of library development and
how developers react to library changes,
including the discovery of flaws. We’ll look
at how library popularity has changed
over the last two years. We’ll see how
often and quickly libraries are updated
(not often), and how quickly flaws are
addressed (surprisingly quickly!). We’ll also
dive deeper into those fixes and see when
updates might be hard.

We also turned our attention not just to
the data on software components, but to
the voice of developers themselves. We
conducted a survey of Veracode users
to better understand their development
practices and how they utilize third-party
software. We then matched up survey
responses to our technical data and can
show how developer priorities can affect
their application’s security.

 READ ON TO LEARN MORE ABOUT THE LIFE

 AND TIMES OF THIRD-PARTY LIBRARIES.

We’ll see that reacting to the shifting
landscape requires the right priorities
with the right information, and with both,
making applications more secure is not
overly taxing. We hope the insights within
can help developers more effectively utilize
third-party software.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
IN

TR
O

D
U

C
TI

O
N

0 4

KEY INSIGHTS
Open source libraries
are constantly evolving;
what appears secure today
may not be tomorrow.

79%

65%
Despite this dynamic landscape,
79 percent of the time, developers
never update third-party libraries
after including them in a codebase.

92%
69%
When developers understand the
implications of vulnerabilities and
appropriately prioritize security,
they can fix most flaws easily.

of library flaws
can be fixed with
an update

of updates are
a minor version
change or less

Sometimes updates beget more updates,
but even when they do, 65 percent
of those updates are a minor version
change or smaller, and therefore unlikely
to break the functionality of even the
most complex application.

Lack of contextual information, for instance about
how a vulnerable library relates to their application,
can be a roadblock for developers.

7+ months to fix
50% of flaws

 DEVELOPERS WHO

 LACK THE INFORMATION

 THEY NEED, TAKE:

When alerted to vulnerable libraries, developers can act quickly.

of flaws are addressed within ONE HOUR

of flaws are addressed within ONE WEEK

17%

25%

3 weeks to fix
50% of flaws

 DEVELOPERS WHO

 HAVE THE INFORMATION

 THEY NEED, TAKE:

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

0 5

POPULAR
LIBRARIES

SECTION TWO

Before we examine the life and times of
any given library, we should examine which
libraries are currently living large.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
P

O
P

U
LA

R
 L

IB
R

A
R

IE
S

0 6

Ruby

1 rakerake 1
2 tzinfo

tzinfo 9

3 i18n

i18n 7

4 rack

rack 11 11 json

json 2

5 multi_json

multi_json 10

24 di�-lcs

di�-lcs 3

25 rspec-expectations

rspec-expectations 4

26 rspec-core

rspec-core 5

2019 2020

23 Crashlytics

Crashlytics 1

22 Fabric

Fabric 2

15 FirebaseInstanceID

FirebaseInstanceID 3

5 Alamofire
Alamofire 4

3 FirebaseAnalytics

FirebaseAnalytics 5

2 FirebaseCore

FirebaseCore 6

1 SwiftLint

SwiftLint 11

4 nanopb

nanopb 7

Swift

2019 2020

1 psr/log

psr/log 2 2 phpunit

phpunit 8

3 php-timer

php-timer 5

4 php-text-template

php-text-template 6

5 php-file-iterator

php-file-iterator 3

6 php-code-coverage

php-code-coverage 4

8 doctrine/instantiator

doctrine/instantiator 1

PHP

2019 2020

1 sixsix 1

2 urllib3

urllib3 3 3 requests

requests 5

4 idna

idna 2

5 chardet

chardet 7

8 setuptools

setuptools 4

Python

2019 2020

1 SLF4J API ModuleSLF4J API Module 1

2 Jackson-coreJackson-core 2

3 Jackson-annotationsJackson-annotations 3

4 jackson-databindjackson-databind 4

5 Apache Commons CodecApache Commons Codec 5

Java

2019 2020

JavaScript

1 inheritsinherits 1
2 isarrayisarray 2
3 safe-bu�ersafe-bu�er 3

14 core-util-is

core-util-is 4

21 string_decoder

string_decoder 5
4 ms

ms 8

5 debug

debug 9

2019 2020

.NET

1 Newtonsoft.JsonNewtonsoft.Json 1
2 Runtime

Runtime 3 3 Threading.Tasks.Extensions
Threading.Tasks.Extensions 2

4 Diagnostics.Debug

Diagnostics.Debug 8

5 Threading

Threading 9
12 IO.FileSystem.Primitives

IO.FileSystem.Primitives 4

23 Runtime.CompilerServices.Unsafe

Runtime.CompilerServices.Unsafe 5

2019 2020

Go

1 /x/net

/x/net 2 2 /x/text

/x/text 1

3 /pkg/errors

/pkg/errors 5

4 /golang/protobuf

/golang/protobuf 3

5 /davecgh/go-spew

/davecgh/go-spew 9

6 /x/sys

/x/sys 4

2019 2020

2 Or top 50 if you want to check out this interactive.

Last year, we looked at the top ten2 most popular libraries (by name)
across a number of different languages.

We could do that again, but looking at the overall popularity with one more
year of data isn’t going to move things around too much. So this year, we
examine the year-over-year popularity of libraries in Figure 1. We looked
at all the libraries that made an appearance in the top five (by percentage
of applications using the library) in either 2019 or 2020 and looked at how
their relative ranks changed.

 JAVA

For some languages, there is little change. Java, with a long-running
and robust third-party library ecosystem, sees no change in the top five.

 SWIFT

In contrast, Swift looks like a shaken snow globe, with the top two libraries
from 2019, Crashlytics and Fabric, not even breaking the top 20 in 2020. The
reason is simple: Google (the parent company behind Firebase) acquired
both companies and integrated the functionality into Firebase, leading to
the meteoric rise in two Firebase libraries.

Figure 1 Top libraries from 2019 and 2020

http://www.veracode.com/sites/default/files/pdf/resources/ipapers/state-of-software-security-open-source-edition/index.html

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
P

O
P

U
LA

R
 L

IB
R

A
R

IE
S

0 7

Ruby

SwiftPHP Python Java

JavaScript.NET Go

1 /x/text/x/text 1
2 /dgrijalva/jwt-go/dgrijalva/jwt-go 2
3 /gogo/protobuf

/gogo/protobuf 4 /gorilla/websocket
/gorilla/websocket 5

4
5 /coreos/etcd

/coreos/etcd 25

8 /gorilla/handlers

/gorilla/handlers 3

2019 2020

1 lodashlodash 1

5 minimist

minimist 2

4 ajv

ajv 3

2 request

request 4

3 ini

ini 5

2019 2020

1 urllib3urllib3 1
2 PyYAML

PyYAML 4
3 Jinja2Jinja2 3

26 Twisted

Twisted 2

4 requests

requests 9

5 cryptographycryptography 5

2019 2020

1 nanopbnanopb 1

2 SDWebImageSDWebImage 2

4 CocoaLumberjack

CocoaLumberjack 3 3 OpenSSL-Static

OpenSSL-Static 4

5 SwiftClientSwiftClient 5

2019 2020

.NET

1 System.Text.RegularExpressionsSystem.Text.RegularExpressions 1

2 System.Net.Http

System.Net.Http 3 3 Microsoft.NETCore.App

Microsoft.NETCore.App 2

4 Microsoft.AspNetCore.Http

Microsoft.AspNetCore.Http 5

9 Microsoft.AspNetCore.App

Microsoft.AspNetCore.App 4

5 System.Net.Security

System.Net.Security 8

2019 2020

1 zendframework/zendframework1

zendframework/zendframework1 7

4 symfony/http-foundation

symfony/http-foundation 1
2 symfony/phpunit-bridge

symfony/phpunit-bridge 13

6 twig/twig

twig/twig 2
3 symfony/symfony

symfony/symfony 19

14 illuminate/database

illuminate/database 3

7 laravel/framework

laravel/framework 4

23 drupal/core

drupal/core 5 5 symfony/cache

symfony/cache 18

2019 2020

4 json

json 1

3 rake

rake 2

1 rack

rack 3

2 nokogiri

nokogiri 4

5 actionpack

actionpack 6

7 activesupport

activesupport 5

2019 2020

1 jackson-databindjackson-databind 1

5 ApacheCommonsCodec

ApacheCommonsCodec 2 Guava:GoogleCoreLibrariesforJava

Guava:GoogleCoreLibrariesforJava 3 ApacheHttpClient

ApacheHttpClient 4

2

3

4 SpringWeb

SpringWeb 5

2019 2020

This year, we wanted to examine
libraries that are both popular
and have known vulnerabilities.

So, we created a similar figure, which
focuses on libraries that had known
vulnerabilities and were scanned in
both 2019 and 2020. The results can
be seen in Figure 2. What’s interesting
here is the reappearance of some
names from Figure 1.

Figure 2 Top vulnerable libraries from 2019 and 2020

 PYTHON

The fall of the Twisted library in Python may be attributable to the
expanding capabilities of the built-in functionality in Python, with the
built-in library asyncio receiving significant updates in 2016 and late
2018, and perhaps more importantly has only seen one CVE associated
with it (CVE-2021-21330), in contrast to Twisted’s seven over the course
of its lifetime.

 JAVA

Jackson-databind has both vulnerable and non-vulnerable versions
but is so popular that it makes both lists.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
P

O
P

U
LA

R
 L

IB
R

A
R

IE
S

0 8

A point that we’d like to emphasize (though one
that might seem obvious to most) is that what’s hot
and what’s not can change within the span of a year.
Probably more importantly, what’s secure and what’s
not can change equally fast. Old libraries “age like milk”
and so keeping up with an inventory of what’s in your
application is important.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

0 9

LIBRARY
SELECTION

10 Library selection process

11 Library evaluation and problems

13 Most libraries are never updated

15 How long do they stick around before being updated?

SECTION THREE

We’ve looked at which libraries are
selected most often, so now we take
the next step and ask: How do developers
choose libraries for their applications?
After all, when borrowing someone else’s
code, there are a lot of things to consider:

• Does this do exactly what I want?

• Will this library introduce any
vulnerabilities into my application?

• If a vulnerability in a library is discovered,
how quickly will it be addressed by the
library’s developers?

• Does its license even permit me to use
it in a commercial application?

We could go on and on (seems like
we already have), but rather than keep
asking questions, let’s get to some
answers. To help provide those answers,
we surveyed Veracode users asking these
questions, and more. We received nearly
1,800 responses to our short survey, and
we were able to correlate survey responses
to anonymous account data.3 This allows
us to correlate the responses in the survey
with the actual development practices.

 LET’S DIVE IN AND SEE

 WHAT WE CAN SEE.

3 See the appendix for some more details on our data.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
LI

B
R

A
R

Y
 S

EL
EC

TI
O

N

1 0

PERCENT OF RESPONDENTS

Do you follow a formal process for selecting third-party libraries? (n=1.5k)

28.4%

19.1%

52.5%

NoUnsureYes

“ Unsure” means that either they
don’t have a formal process or
that they are unaware of the
process they do have and may
be simply ignoring it.

Library selection process
We first asked, “Do you have a formal process
for selecting third-party libraries?”

It is unsurprising that customers who care enough
about software security to purchase scanning
software, overwhelmingly, have a formal process
for library evaluation, though the large fraction
(29 percent) who are unsure is a bit concerning.
This means that either they don’t have a formal
process or that they are unaware of the process
they do have and may be simply ignoring it.

Developing, sharing, and following a unified policy
can be difficult among large and disparate teams,
likely leading to the uncertainty we see in Figure 3.

Figure 3
Number of organizations with a formal
process for selecting libraries (n=1.5k)

 WHAT ABOUT MY

 CONTAINERS?

Unless you’ve been living under
a rock for the past few years,
you’ve probably heard terms like
“container” and “docker” and
“Kubernetes” being tossed around
the application development world.

Containerization has been a boon
to developers much in the same
way third-party libraries are. It
allows them to not only package up
their applications and libraries to
run on some predefined server OS,
but also allows them to bring the
whole OS along with them.

This type of inclusion requires its
own analysis, and we have some
research coming down the pipeline
looking into the unique challenges
presented by containers.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
LI

B
R

A
R

Y
 S

EL
EC

TI
O

N

1 1

67.1% 25.7%

62.5% 23.2% 11.0%

15.1%41.5%41.1%

13.9%30.7%52.5%

15.4%40.9%40.9%

Always Frequently Rarely Never

Functionality

Licensing

Security

Project activity

Support

PERCENT OF RESPONSES

When evaluating a third-party library, how often do you consider the following: (n=724)

Percent of repositories
with third-party vulns on
latest default branch scan

84.2%

80.7% Developer always considers security

Developer does not always consider security

PERCENT OF REPOSITORIES WITH VULNERABILITIES IN THIRD-PARTY LIBRARIES

To that end, we examined whether users who always considered
one of the previous criteria have fewer issues in a particular area.

 LICENSING

We start with licensing4 in Figure 5, and we see that repositories are much
more likely to have license issues on the latest scan of the default branch
if survey respondents say they don’t “always” consider the license when
selecting libraries. This is a pretty stark divide. While known violations
resulting in legal actions are rare, when they do occur, they can cost big
money (up to $150k per instance). Ensuring that you are allowed to use a
particular library and making that part of your evaluation process seems
like a low-cost hedge against major future headaches.

Figure 4 Priorities when selecting libraries (n=724)

Figure 5 Scanning for license issues resolves problems

Figure 6 Formal security process reduces vulnerabilities

Library evaluation and problems

Percent of repositories
with license issues on latest
default branch scan

Developer always checks license

Developer does not always check license54.2%

27.0%

PERCENT OF REPOSITORIES WITH LICENSE ISSUES

 SECURITY

Licensing is certainly an issue, but what about the main event: Security?
Figure 6 indicates that having a formal process reduces by a small amount
the percentage of libraries in repositories that have vulnerabilities. Two
issues present themselves in this result. First, as we saw last year, almost all
repositories include libraries with some sort of vulnerability. The other is that
the data is biased towards those who do think about security; they bought
Veracode products after all. But even in the face of these two issues that
would likely obscure any difference, we can still find one of about 3.5 percent.

OK, so you have a process, but what is that process?

Specifically, we asked what developers look for when they are
considering adding a new library. The results can be seen in
Figure 4. Unsurprisingly, the leader here is functionality. After all,
without the correct functionality, what’s the point of including a
big pile of code? Next in line is licensing, followed by security. It is
not surprising that all of these are considered at least frequently by
80+ percent of respondents; all these things matter when selecting
a library. What might be a better split here is whether they are
always considered. This is an indication that a particular need
is part of the selection process.

4 We’d start with “functionality,” but Veracode can’t make a library do what you want it to do.

https://www.upcounsel.com/software-license-violation-penalty#:~:text=Depending%20on%20the%20case%2C%20the,to%20five%20years%20in%20prison.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
LI

B
R

A
R

Y
 S

EL
EC

TI
O

N

1 2

Picking libraries is just the start; developers also
need to maintain them. Security issues crop up,
new functionality is added and old is deprecated,
projects are abandoned. Taking care of these libraries
while they are under development is a challenge.
In this section, we examine how developers handle
the changes to the libraries they use.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
LI

B
R

A
R

Y
 S

EL
EC

TI
O

N

1 3

In first scan, never updated

PERCENT OF LIBRARIES
(minimum 100 scans, 1 year of development)

13.9%

27.0%

46.0%

Added after first scan, updated or dropped

Added after first scan, never updated

13.1%In first scan, updated or dropped

Most libraries are
never updated
One striking fact is that once developers
pick a library/version, they tend to stick
with it. Figure 7 shows that 65 percent of
libraries appear in the first scan of the
repository and are never updated, with
an additional 14 percent added at some
point during development and never
updated to a new version.

I know what you are thinking, “Well,
some of these repositories might yet
be young, you might not have seen the
full life of the application.” Nope. Even
if we restrict this to repositories that
have relatively long lifespans and many
scans, 73 percent of libraries are added
and never updated (Figure 8). As with
everything in application development,
this depends on the language of course.

Figure 7 How often developers update libraries

Figure 8 How often developers update libraries over time

73 percent of libraries are
added and never updated.

9.6%

11.4%

14.0%

65.0%

Added after first scan, updated or dropped

In first scan, updated or dropped

Added after first scan, never updated

In first scan, never updated

PERCENT OF LIBRARIES

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
LI

B
R

A
R

Y
 S

EL
EC

TI
O

N

1 4

Restricting to repositories we have significant data on (100 scans over one year), we see that
some languages get more attention than others. We examine the difference in Figure 9.

37.7%

38.9%

44.2%

53.7%

60.6%

64.7%

65.9%

67.1%

PHP

Python

Swift

Go

.NET

Java

JavaScript

Ruby

PERCENT OF LIBRARY VERSIONS IN FIRST SCAN THAT NEVER UPDATE

An interesting thing here is that PHP,
usually the security black sheep among
languages, has the lowest rate of “set it
and forget it.” While it shines here, sadly
it won’t last as we’ll see later.

Figure 9 Libraries never updated by language

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
LI

B
R

A
R

Y
 S

EL
EC

TI
O

N

1 5

5 In particular we are using a Kaplan-Meier estimate to understand the time to update libraries.
6 True SOSS fans will remember us using this kind of analysis going back years.

How long do they stick around
before being updated?
Many libraries have never seen an update, even after
one year, but how long does it take to update those
that actually do get updated?

We use a fancy statistical technique called survival
analysis.5 Survival analysis is a technique developed mainly
to understand the survival time of patients facing various
types of diseases and inferring the effects of treatment.6
In short, it works like this, we look at the lifetime of those
we know are updated and use that to estimate how long
the ones that haven’t been updated yet will stick around.
The results can be seen in Figure 10.

Consistent with the “most libraries have never been
updated” stat, survival analysis estimates that libraries
stick in applications for a very long time. Fifty percent will
take longer than 21 months to update, with an estimated
25 percent not being updated after as long as four years
(the time horizon of our data).

But we are here to talk about security, so let’s not just
think about how long it takes developers to update
to the next version, but how long it takes them to fix
vulnerable libraries, and good news, vulnerable libraries
are updated faster!

Figure 11 shows that it takes about 665 days for 50 percent
of libraries without vulnerabilities to be updated, but only
414 for those with vulnerabilities. Programming note, this
doesn’t mean developers are taking more than a year to
update or fix once alerted of a vulnerability. Rather, this
includes the time when the library is used but isn’t known
to have a flaw. In the next section, we examine the reaction
time of developers once they know there is a flaw.

0%

25%

50%

75%

100%

TIME

P
ER

CE
N

T
O

F
LI

B
R

A
R

IE
S

N
O

T
Y

ET
 U

P
D

A
TE

D

0 year 1 year 2 years 3 years 4 years

Libraries with
no known vulnerabilities

Libraries with vulnerabilities
0%

25%

50%

75%

100%

TIME

P
ER

CE
N

T
O

F
LI

B
R

A
R

IE
S

N
O

T
Y

ET
 U

P
D

A
TE

D

0 year 1 year 2 years 3 years 4 years

Figure 10 Time to update libraries

Figure 11 Time to update vulnerable libraries

Fifty percent of libraries
without vulnerabilities will
take 665 days to update.

Fifty percent of libraries
with vulnerabilities will
take 414 days to update.

Fifty percent of libraries will take
longer than 21 months to update.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

1 6

FIXING
VULNERABILITIES

SECTION FOUR

19 Severity

20 Dependency type

21 Vulnerability type

22 Language

23 Developer resources

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

1 7

0%

25%

50%

75%

100%

1 hour 1 day 7 days 2 months 1 year 4 years

DAYS S INCE VULNERABLE L IBRARY SCANNED

P
ER

CE
N

T
O

F
VU

LN
ER

A
B

IL
IT

IE
S

N
O

T
Y

ET
 A

D
D

R
ES

SE
D

25% of
vulns fixed
in 7 DAYS

50% of
vulns fixed
in 89 DAYS

75% of
vulns fixed
in 351 DAYS

The previous sections asked how long it takes to update
vulnerable libraries (whether the vulnerability is known or not),
but this excludes the time the vulnerability was unknown or the
time it was known, but the developers weren’t notified. Once
a developer sees the result of the scan on their repository,
how fast do they react?

Figure 12 Time to fix vulnerable libraries once alerted to the issue

The answer in Figure 12 is pretty darn fast.
This chart is going to act as our Rosetta
stone for the next few charts.

As we do more ‘time to update vulnerable
libraries’ curve comparisons, things can
get awfully cluttered. So we’ve simplified
the curve to the right into a segment.

 PERCENT OF VULNS

The “50% of vulns” acts as a measure of
‘typical’, while 25 percent and 75 percent
give us a good sense of how quickly the
curve descends. SOSS fans will remember
these ‘interval’ charts appearing in
SOSS Volume 9.

 X-AXIS

One last note, time on the horizontal axis
is on a ‘log scale’, that means each step
is an order of magnitude increase rather
than a fixed time period. If that’s too much,
don’t worry, we’ll directly label the points
so you can make your own comparisons.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

1 8

In fact, nearly 17 percent of vulnerable libraries are fixed within
an hour of the scan that alerted the developer to the vulnerability;
25 percent are fixed within seven days. The bump seen in
Figure 13 indicates that many developers probably scan weekly,
see the vulnerabilities, and update. After that, 50 percent of vulns
are fixed within three months, and 75 percent within a year.

Some vulnerabilities linger, and we’ll look at what causes that
lingering shortly. The kernel of truth in Figure 13 is that once
developers are made aware of flaws they can (and do!) take
action quickly. Having the right information makes applications
more secure, faster.

25% of all vulns 50% 75%

8 HOURS 28 DAYS 263 DAYS

7 DAYS 107 DAYS 381 DAYS

Low

Medium

High

VU
LN

ER
A

B
IL

IT
Y

 S
EV

ER
IT

Y
 L

EV
EL

25% of high
severity vulns
fixed in 21 HOURS

50% of high
severity vulns

fixed in 65 DAYS

75% of high
severity vulns

fixed in 287 DAYS

1 hour 1 day 7 days 2 months 1 year

DAYS S INCE VULNERABLE L IBRARY SCANNED

Within one hour Within three months

Within one week Within one year

 TIME IT TAKES TO FIX VULNERABLE LIBRARIES

17% 50%

25% 75%

Figure 13 Library update speed based on flaw severity

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

1 9

Severity
So now we know that most
vulnerable libraries get updated
quickly, but are developers
prioritizing the dangerous
ones first?

Veracode tracks vulnerability
severity, partially based on CVSS
score, so we can see whether
high-severity vulnerabilities get
addressed first. Interestingly, no
clear trend emerges in Figure 13.
Low-severity vulns are fixed
the fastest, and high-severity
vulnerabilities are fixed slightly
faster than the population at
large. As a bit of foreshadowing,
allow us to speculate that
other factors are driving the
replacement of libraries.

It’s possible that most developers
are unconcerned with severity,
but luckily we had the foresight
to ask developers if this was a
factor, and, lo and behold, some,
but not all, respondents do care
about severity. If we look at survey
respondents and see if they
consider severity in Figure 14,
we find that those developers fix
low- and medium-severity issues
more slowly, and high-severity
issues much more quickly, exactly
as you’d expect.

19 DAYS 131 DAYS 525 DAYS

Low

Not very important

Very important

DAYS S INCE VULNERABLE L IBRARY SCANNED

VU
LN

ER
A

B
IL

IT
Y

 S
EV

ER
IT

Y
 I

M
P

O
R

TA
N

CE

50% of
vulns fixed

in 392 DAYS

75% of
vulns fixed
in 619 DAYS

1 day 7 days 2 months 1 year

28 DAYS 279 DAYS 551 DAYS

High

Not very important

Very important

25% of
vulns fixed
in 16 DAYS

50% of
vulns fixed
in 126 DAYS

75% of
vulns fixed
in 557 DAYS

25% of all vulns 50% 75%

17 HOURS 80 DAYS 501 DAYS

Medium

Not very important

Very important

25% of
vulns fixed
in 21 DAYS

50% of
vulns fixed
in 206 DAYS

75% of
vulns fixed
in 513 DAYS

25% of all vulns 50% 75%

25% of all vulns 50% 75%

25% of
vulns fixed
in 78 DAYS

Figure 14 Effect of prioritizing severity of security issues on update time

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

2 0

Dependency type

25% of all vulns 50% 75%

4 DAYS 62 DAYS 333 DAYS

7 DAYS 90 DAYS 350 DAYS

Direct

Transitive

Both

DAYS S INCE VULNERABLE L IBRARY SCANNED

VU
LN

ER
A

B
LE

 L
IB

R
A

R
Y

 T
Y

P
E

25% of
vulns fixed
in 8 DAYS

50% of
vulns fixed
in 154 DAYS

75% of
vulns fixed
in 370 DAYS

7 days 1 month 1 year

Figure 15 Effect of library dependency type on update time When a library is both a direct
and a transitive dependency,
things get complicated with fixes
taking nearly 2.5 times longer.

If it’s not severity affecting
update time, it may be
something else like exactly
how intertwined a particular
library is with your project.

So, we next examined how different dependency types affect the speed
of updating to non-vulnerable versions. What we see again easily fits
our intuition in Figure 15. Direct dependencies are the easiest (fastest)
to fix. Things get trickier with transitive dependencies; it may be that a
fix will break some functionality in the direct library, meaning a slower
and more difficult fix process.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

2 1

7 DAYS 76 DAYS 351 DAYS

7 DAYS 94 DAYS 451 DAYS

7 DAYS 100 DAYS 364 DAYS

2 DAYS 61 DAYS 251 DAYS

7 DAYS 90 DAYS 378 DAYS

2 HOURS 41 DAYS 232 DAYS

2 HOURS 60 DAYS 232 DAYS

7 DAYS 104 DAYS 279 DAYS

7 DAYS 94 DAYS 515 DAYS

Insecure cipher

Prototype pollution

Deserialization of untrusted data

Authentication bypass

Information disclosure

Cross-site scripting (XSS)

Xml external entity (XXE)

Denial of service (DoS)

Remote code execution

Arbitrary code execution

DAYS S INCE VULNERABLE L IBRARY SCANNED

VU
LN

ER
A

B
IL

IT
Y

 T
Y

P
E

1 day 7 days 1 month

25% of
vulns fixed
in 15 DAYS

50% of
vulns fixed
in 187 DAYS

75% of
vulns fixed
in 444 DAYS

25% of all vulns 50% 75%

Figure 16
Effect of vulnerability type
on library update time

Vulnerability
type
Another aspect of
complexity may be
exactly what the nature
of the vulnerability is.

We can imagine things that affect the
fundamental functionality of a library
might take the library developers a while
to address and the patch might alter the
functionality of the library. The particular
type of vulnerability (here by CWE) is at least
a partial description of this complexity, and
Figure 16 looks at the top 10 most commonly
seen vulnerabilities.

Vulnerabilities that we expect to be complex, such as “Arbitrary Code Execution,”
take a significantly longer timespan to fix than a typical vuln (187 days as
opposed to the 89 days across all vulnerabilities). In contrast, things like
Prototype Pollution should be relatively easy for library developers to address,
i.e., one additional line that checks to make sure user provided objects don’t try
to modify __proto__ attributes. So why would we expect to see a difference in fix
time for those just using the libraries? If a flaw is complex for library developers
to fix, it may require fundamental changes to the way the library operates,
making integrating those changes into downstream applications harder.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

2 2

Language

7 State of Software
Security Open Source
Edition 2020.

8 “Forever vulnerabilities.”

7 DAYS 86 DAYS 240 DAYS

7 DAYS 106 DAYS 364 DAYS

5 HOURS 63 DAYS 237 DAYS

36 DAYS 65 DAYS 127 DAYS

29 MIN 58 MIN 82 DAYS

4 DAYS 96 DAYS 504 DAYS

Python

JavaScript

PHP

Go

Ruby

Java

.NET

DAYS S INCE VULNERABLE L IBRARY SCANNED

LI
B

R
A

R
Y

 L
A

N
G

U
A

G
E

1 hour 1 day 7 days 2 months 1 year
25% of all vulns 50% 75%

25% of
vulns fixed
in 21 DAYS

50% of
vulns fixed
in 150 DAYS

75% of
vulns fixed
in 357 DAYS

Figure 17 Time to update insecure libraries by language

 ORDERING

First, the ordering (here by the time to resolve 50 percent of library
vulnerabilities) is unusual from how “secure” different libraries in different
languages were last year. For example, PHP had a high percentage of libraries
with vulnerabilities, a high density of those flaws, and a high percentage of
flaws with Proof of Concept exploits publicly available.7 But here we see that
half of vulnerable libraries in PHP applications are fixed in a little over two
months, the third-fastest among languages. A heaping dose of surprise at
this result is due to the fact that last year we saw PHP performing dead last
when examining flaw density in libraries and the number of flaws introduced
into applications by PHP libraries.

Once again, we feel obligated to drive home the point that nearly everything depends on language,
and fix times are of course no exception. There are some remarkable results in Figure 17.

 SPEED

Two frankly bonkers results here are the speed of
Python and JavaScript. Both manage to fix 25 percent
of vulnerabilities in less than five hours, with Python
applications addressing 50 percent of flaws the same
hour they are reported. The tails here are long, though.
For most languages, flaws will stick around for years,
and with some languages (.NET, Go, and Ruby), a not
insignificant number of flaws (17 percent, 10 percent,
and 6 percent respectively) are never going to be
fixed within the time horizon of our data.8

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

2 3

Not enough developer resources available

Not enough information to find a solution

Proposed fix would impact application functionality

Sta� doesn't have the skills to address the issue

Always Frequently Rarely Never

PERCENT OF RESPONSES

How often does each of the following delay or prevent you from
addressing security vulnerabilities in open source code? (n=273)

52.7%16.1% 24.2%

47.1%11.8% 34.6%

38.1%12.2% 38.1% 11.5%

35.4%11.1% 37.3% 16.2%

Figure 18 Hindrances to addressing vulnerable open source libraries

Developer
resources

The good news is that the majority of
respondents are rarely (or less) lacking
in skills to fix things, but often a lack
of information or a time crunch can
lead to roadblocks.

Aside from the nature of vulnerabilities (what language
they are written in, their type, and how they are included
in an application), there may be exogenous factors slowing
developers down.

As part of our survey, we asked respondents how each
of the following factors affected their ability to address
vulnerabilities in third-party software (Figure 18).

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
FI

X
IN

G
 V

U
LN

ER
A

B
IL

IT
IE

S

24

VU
LN

ER
A

B
IL

IT
Y

 S
EV

ER
IT

Y
 I

M
P

O
R

TA
N

CE

27 DAYS 256 DAYS 577 DAYS

Not enough developer resources available

Often

Rarely

25% of
vulns fixed
in 49 MIN

50% of
vulns fixed
in 16 DAYS

75% of
vulns fixed
in 124 DAYS

25% of all vulns 50% 75%

37 DAYS 301 DAYS 589 DAYS

57 MIN 23 DAYS 161 DAYS

Not enough information to find a solution

Often

Rarely

25% of all vulns 50% 75%

28 DAYS 280 DAYS 563 DAYS

55 MIN 33 DAYS 221 DAYS

Proposed fix would impact application functionality

Often

Rarely

25% of all vulns 50% 75%

37 DAYS 301 DAYS 589 DAYS

58 MIN 23 DAYS 170 DAYS

Sta� doesn't have the skills to address the issue

Often

Rarely

DAYS S INCE VULNERABLE L IBRARY SCANNED

25% of all vulns 50% 75%

1 hour 1 day 7 days 2 months 1 year

What’s remarkable is we
see a large split in fix times
based on those who answer
“Often” (Always or Frequently)
vs “Rarely” (Rarely or Never)
in Figure 19.

While it is unsurprising that
developers who say they
struggle do in fact struggle,
it’s the scale of that struggle
that is staggering. When
developers frequently don’t
have the resources to fix
vulnerabilities, it can take
nearly 13.7 times longer
to fix half of them.

Figure 19 How different hindrances affect time to fix vulnerable libraries

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

2 5

SUGGESTED
UPDATES

26 Most updates are still small

30 Update chains

SECTION FIVE

One of the most encouraging findings from last
year’s report is that “most fixes are small.” By that,
we mean most findings require updating a library to
a new version, which only differs by a minor, patch,
or revision number. If semantic versioning is being
followed, the implication is that most vulnerable
libraries can be updated without a major impact
on functionality.

We dive a bit deeper into what we mean by
most updates being small and what happens when
updates induce their own problems in this section.

 LET’S SEE WHAT

 WE CAN SEE.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

2 6

Most updates are still small
This year, we are working with a slightly expanded
dataset, and a whole new year of vulnerabilities and
library development has shifted our distribution a bit.
We’ve got good news and bad news. The good news
is there are fewer vulnerable libraries that don’t have
an update available with a fix (26.2 percent down
to 8.4 percent). Unfortunately, most of that change
goes straight into larger updates, which now make
up 31 percent of all updates (Figure 20).

Figure S1 Actions taken when no update exists for a vulnerable library (n=279)

8.4%

28.8% 28.9% 29.8%

4.1%

None
available

Major Minor Patch Revision

SIZE OF UPDATE TO FIX ISSUE

PE
R

CE
N

T
O

F
IS

SU
ES

Figure 20 How complicated are library security fixes?

 BUT WHAT ABOUT WHEN THERE AREN’T UPDATES?

24.4%49.1%20.8%

29.1%35.6%25.5%9.7%

28.4%37.5%25.1%9.1%

28.5%39.1%21.7%10.7%

22.2%39.4%28.0%10.4%

38.3% 34.3% 14.8%12.6%

Always Frequently Rarely Never

Find a di�erent library
with similar functionality

Rewrite the functionality
in in-house code

Manually patch the library

Fix the flaw and contribute the
fix to the open source library

Fork and maintain a separate
branch of the library

Ignore it

PERCENT OF RESPONSES

If no update exists for a flawed library,
how often do youuse each of the following
methods to address vulnerabilities? (n=279)

We’ve dug in hard on what updates look like for library fixes, and with
good reason, as we saw less than 10 percent of vulnerabilities in third-party
libraries don’t currently have updates that allow them to be fixed. So what
do developers do when faced with this minority? In our survey, we asked.
And Figure S1 has the answers.

Most are going to look elsewhere for the functionality (70 percent
responding “Always” or “Frequently”), or just do it themselves. Unfortunately,
contributing a fix to the library itself is somewhat of a rare occurrence, but it
does happen, with nearly 10 percent saying they “Always” do. A deeper dive
into those unfortunate 8.4 percent of flaws with no update available and
how they might be addressed is certainly rich ground for future work.

When we ended on this fact last year, we didn’t
slice and dice the results. This year, we can’t help but
break out the metaphorical knives and view this fact
through the lens of various factors we know make a
difference in other parts of the DevSecOp world.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

2 7

LANGUAGE
First and foremost is language, and
in a return to the familiar once again,
Figure 21 has bad news for PHP.

 PHP

While the vast majority of vulns can
be fixed with an update in PHP, more
than 60 percent of them require a major
update. We can’t help but commend PHP
developers for being relatively fast fixing
their libraries in spite of the fact that it
usually requires a major version bump.

 JAVA

Another good news/bad news situation
is with Java, which has the highest
percentage of flaws that can be fixed
with a minor update or less, but the
second highest number that don’t
have any update currently available.

16.7%

46.1%

18.6%

32.2%

42.0%

9.8%

14.1%

28.0%

33.7%

24.5%

61.5%

4.9%

48.4%

25.2%

32.9%

46.7%

Java Go Javascript Ruby Python PHP.NET

P
ER

CE
N

T
O

F
LI

B
R

A
R

Y
 U

P
D

A
TE

S

Patch

Revision

Minor

Major

None
Available

 7.9%

18.0%

25.3%

40.2%

40.8%

30.8%

26.0%

14.3%

Figure 21 Scope of library security fix by language

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

2 8

6.9%

24.1%

26.4%

35.1%

7.5%

8.8%

27.8%

40.0%

23.4%

9.3%

32.0%

29.9%

26.6%

ISSUE SEVERITY

P
ER

CE
N

T
O

F
LI

B
R

A
R

Y
 U

P
D

A
TE

S

7.5%

25.9%

23.0%

41.3%

6.0%

29.5%

31.0%

29.7%

8.8%

28.9%

29.0%

28.9%

LIBRARY DEPENDENCY TYPE

P
ER

CE
N

T
O

F
LI

B
R

A
R

Y
 U

P
D

A
TE

S

Low Medium High Direct Both Transitive

Patch

Revision

Minor

Major

None
Available

DEPENDENCY TYPE
AND SEVERITY
For completeness, we also present
the breakdown based on severity
and dependency type in Figure 22.

There is some variation here, but we
have no (statistical) reason to believe
that the severity is actually altering
the distribution in significant ways.
Are high-severity vulns slightly more
likely to have small updates? Sure,
and that’s probably a good thing,
but it’s not a striking difference.
In the same way, we don’t see a huge
difference due to the way the library
is introduced into an application.

Figure 22 Size of update required by dependency type and flaw severity

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

2 9

Open redirection

Exposed API

Authentication bypass

Server-side request forgery (SSRF)

Cross-site request forgery (CSRF)

Uninitialized bu�er allocation

Deserialization of untrusted data

Remote code execution

SQL injection

Information disclosure

XML external entity (XXE)

Prototype pollution

Arbitrary code execution

Arbitrary file write

HTTP request smuggling

Denial of service (DoS)

Privilege escalation

Input validation bypass

Cross-site scripting (XSS)

Directory traversal

Security manager bypass

Timing attack

Insecure defaults

Monster-in-the-middle (MitM)

Insecure random number generation

PERCENT OF L IBRARY UPDATES

0% 25% 50% 75% 100%

Patch Minor Major None AvailableRevision

 AUTHENTICATION BYPASS

 + EXPOSED API

Thankfully, these can easily
be fixed with a minor
update or less

TYPE OF FLAW
Where we do see significant variation is in Figure 23. Things that often
require major updates are fundamental to a library’s functioning.

Figure 23 Size of library update required by vulnerability type

 INSECURE RANDOM

 NUMBER GENERATION

May indicate major
functionality changes for
cryptographic libraries

 INSECURE DEFAULTS

May need to be fixed with
fundamental changes to the
default behavior of the library
relying on those defaults

 SECURITY MANAGER

 BYPASS

Somewhat scary, it is
failing to have an update
61 percent of the time

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

3 0

Update chains
Any experienced developer will recognize
that updating a library to a new version
may not be the end of things.

Indeed, updating a library might simply
beget new vulnerabilities, requiring more
updates, which beget new vulnerabilities
which…you get the idea. We examine these
chain updates here. First, we need to think
about what the possibilities are for various
types of update chains.

01.

 ONE STEP TO UNFLAWED VERSION

A single update fixes all our problems.

02.

 MULTIPLE STEPS TO UNFLAWED VERSION

One update is not enough, but after
enough steps, we get to a clean version.

03.

 MULTIPLE STEPS TO FLAWED VERSION

We do multiple updates, only to arrive at a
flawed version with no further available updates.

04.

 NO UPDATE AVAILABLE

There might not be any update available
to start with.

05.

 CIRCULAR UPDATE

There might be a dreaded situation where the
suggested updates are actually a downgrade
to a version we’ve already updated to. These
types of circular updates are likely the most
pernicious to address.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

3 1

The relative breakdown of these possibilities is
presented below in Figure 24, and the results are
heartening. The slim majority of updates are a
single step to a clean version, and most updates
(more than 86 percent) end in a library with no
known flaws. Thankfully, none of those scary
updates appear in our data.

52.3%

34.1%

8.4%
5.3%

P
ER

CE
N

T
O

F
LI

B
R

A
R

Y
 U

P
D

A
TE

S

One step to
unflawed version

Multiple steps to
unflawed version

No update available

Multiple steps to
flawed version

Figure 24 Steps needed to update a vulnerable library

But how do these
chains affect our
result that most
updates are small?
It doesn’t matter if the first
update is small if the last
update is large. Things shift a
little towards larger updates
in Figure 25, but it is not
substantial. So the rabbit hole
might twist and turn, but it
generally doesn’t take you too
far from where you started.

Figure 25 Size of update required for vulnerable libraries based on step in chain

8.4%

28.8%

28.9%

29.8%

4.1%

8.4%

31.9%

33.0%

25.0%

P
ER

CE
N

T
O

F
LI

B
R

A
R

Y
 U

P
D

A
TE

S

First update Final update

Patch

Revision

Minor

Major

None
Available

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
S

U
G

G
ES

TE
D

 U
P

D
AT

ES

3 2

57.0%

5.1%

13.5%

6.2%

15.3%

P
ER

CE
N

T
O

F
U

P
D

A
TE

 C
H

A
IN

S

45.1%

36.0%

18.2%

43.5%

14.7%

41.7%

74.3%

19.9%

19.6%

73.7%

97.2% 97.2% 34.2%

59.4%

6.4%

UPDATE CHAIN LENGTH

P
ER

CE
N

T
O

F
U

P
D

A
TE

 C
H

A
IN

S

1 2 3 4 5 6 7

Patch

Revision

Minor

Major

Unflawed

Flawed

But exactly how deep
is that rabbit hole?
It’s one thing to say that the end result
isn’t a large update, but going through
the pain of potentially dozens of updates
might break the spirit of even the most
strident developer.

 FIGURE 26 SHOWS US

01.

Most update chains (when they
do exist) are short.

02.

Long update chains themselves
are surprisingly not correlated with
particularly large updates, and in fact we
see a rather random amount of variation,
with the caveat that we have relatively
small sample sizes for the medium
length (three to five step) chains.

03.

Finally, and perhaps most surprisingly,
long chains are less likely to dead end.
In fact, chains longer than two steps
in our data are guaranteed to end in
a clean fix, so all that effort wading
through dependency hell will eventually
get you a less vulnerable application.

Figure 26 Number of steps required to reach a secure library

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

3 3

Despite this dynamism, a large amount of library selection is
“set it and forget it,” with developers finding the functionality
they need and never changing it. What was a functional library
with no flaws two years ago may expose an application today.

So how do we face the challenge of this changing landscape?
The results in this report suggest that when developers are given
the information they need, they can act quickly to resolve issues.
It helps that most fixes are no more taxing than a minor software
update, something not likely to break the inner workings of even
the most complex application.

 TO LEARN MORE ABOUT SOFTWARE

 SECURITY, CONTACT US.

Open source libraries
are constantly
evolving and changing.

CONCLUSION
SECTION SIX

https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website
https://info.veracode.com/web-contact-us.html?utm_source=main_navigation&utm_medium=website

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n
C

O
N

C
LU

S
IO

N

3 4

Appendix: Methodology

Number of scans

Number of repositories

Number of unique libraries

Survey responses

13 Million

86,000+

301,000+

1,744

This research draws on Veracode Software Composition
Analysis to catalogue the use of third-party software.
Customer repositories are examined for third-party
library information and dependencies, generally
collected through the application’s build system.
This includes nearly 13 million scans of more than
86,000 repositories, containing more than 301,000
unique libraries. Data on scans between July 2016 and
February 2021 were examined. Libraries are checked
against a database of known flaws, which includes the
national vulnerabilities database. Suggested updates
for vulnerable libraries are drawn from information
about the particular vulnerability and the smallest
update which addresses the flaw is considered.

This year anonymized account data was combined
with an anonymized survey of Veracode customers
through the Veracode platform. The survey received
1,744 responses from customers of a variety of our
solutions. A fraction of survey respondents failed to
complete the survey at each stage, each of the survey
results is presented with the number of complete
responses received.

Ve
ra

co
de

 S
ta

te
 o

f S
of

tw
ar

e
Se

cu
rit

y:
 V

ol
um

e
11

 /
 O

pe
n

So
ur

ce
 E

di
tio

n

3 5

Veracode is the leading AppSec partner for creating
secure software, reducing the risk of security breach
and increasing security and development teams’
productivity. As a result, companies using Veracode
can move their business, and the world, forward.
With its combination of automation, integrations,
process, and speed, Veracode helps companies get
accurate and reliable results to focus their efforts
on fixing, not just finding, potential vulnerabilities.
Veracode serves more than 2,500 customers
worldwide across a wide range of industries.
The Veracode cloud platform has assessed more
than 14 trillion lines of code and helped companies
fix more than 46 million security flaws.

www.veracode.com

Veracode Blog

Twitter

Copyright © 2021 Veracode, Inc. All rights reserved.
All other brand names, product names, or trademarks
belong to their respective holders.

http://www.veracode.com
http://www.veracode.com/blog
https://twitter.com/Veracode

