
VOLUME 5

Read Our Predictions
for 2013 and Beyond

APRIL 2013

State of Software
Security Report
The Intractable Problem of Insecure Software

As some of you may know I have spent most of my 25 year career in the IT Security industry, more specifically, I’ve been
focused on application security as the use of web and mobile applications has flourished. For the past five years I have been
an active participant in the preparation of the report before you today—our annual State of Software Security Report, or as
we fondly refer to it at Veracode, the SoSS Report.

Throughout my career I have been evangelizing the need for more secure application development practices, and with the
release of each new SoSS report I find myself of two minds. The optimist in me is proud of the vast improvement in general
awareness of the importance of securing the application layer. But the pessimist remains very concerned that we are not
seeing the dramatic decreases in exploitable coding flaws that I expect to see with each passing year. It’s as if for each
customer, development team, or application that has become more secure, there are an equal number or more that do not.

While the benefits of web applications are clear to organizations, the risks to their brands, infrastructure, and their data
are seemingly not as clear, despite being more apparent than ever. It’s at this point of my letter that I could mention that a
cyber-Vesuvius is about to bubble over and create a cyber-Pompeii as there are so many breaches reported; but I’ll resist that
temptation. Instead, here are a few links to recently released reports that do a shockingly good job of telling the scary story:

• 2013 Trustwave Global Security Report1

• 2012 Verizon Data Breach Investigations Report2

I only cite these examples because the reports illustrate the “after” scenario, evaluating what has happened when vulnera-
ble systems are exposed to the threat space. We at Veracode see the SoSS report as different, using data to shine light on
what is to come by understanding the latent vulnerabilities in software organizations are deploying. The “before” scenario
means our SoSS reports have become great predictors about future data breaches. For example, this report shows 32%
of applications analyzed by Veracode contain SQL injection flaws. Knowing that, you should not be surprised that Trustwave
reported that SQL injection was the attack method for 26% of all reported breaches in 2012. I can tell you with confidence
that malicious actors target the flaws that are easy to find and exploit—like SQL injection—therefore the instances of SQL
injection attacks will surely increase in 2013. Put more bluntly, we must figure out a way to code more securely simply to
keep up with attacks from the most basic attacker.

As you read this report I urge you to consider your organization’s application portfolio and how you currently make decisions
about the risks your organization is willing to take. The amount of risk an organization takes should be a strategic business
decision—not the aftermath of a particular development project. If you’re learning about risks after a breach—be it yours or an
industry counterpart—then the time to act is now. Use this SoSS report to estimate your current application risk landscape—
particularly on applications that you have never tested or only tested manually. Consider how you can act now to improve
the security posture of your organization, by addressing the applications that you currently have in development and/or in
production. Hopefully by the time we release SoSS V6 in 2014, we’ll see that dramatic improvement I’ve been waiting for!

I hope you enjoy the report.

Chris Wysopal
Co-Founder, CISO and CTO, Veracode

Dear SoSS Report Reader,

1 www2.trustwave.com/rs/trustwave/images/2013-Global-Security-Report.pdf
2 www.verizonenterprise.com/resources/reports/rp_data-breach-investigations-report-2012_en_xg.pdf

Veracode State of Software Security Report: Volume 5

1

Introduction . 2

Executive Summary . 3

Key Findings . 3

Security of Applications . 5

Compliance with Standard Policies . 5

Remediation Analysis . 7

Security Quality Analysis . 8

Language Analysis . 10

Java . 11

.NET . 13

C/C++ . 16

PHP . 18

ColdFusion . 20

Applications Types . 22

Mobile Threat Landscape . 22

State of Mobile Application Security . 23

Web Application Threat Landscape . 26

State of Web Application Security . 28

Non-Web Applications Threat Landscape . 31

State of Non-Web Application Security . 31

Appendix A: About the Dataset . 34

Appendix B: Understanding How the Veracode Platform Determines Policy Compliance 37

Whisker Plot Definition . 38

P-Value Definition . 39

Generalized Linear Model . 40

Table of Contents

Introduction
For the past five years, the Veracode State of Software Security (SoSS) report has
examined trends associated with vulnerabilities in applications. Our initial goal was
to provide key insights to those charged with managing enterprise application security
risk, to give them a series of benchmarks from which they could measure their own
application security posture. After five years and five versions of SoSS our goal now
is to highlight the slow progress in securing the application layer. Since insecure
applications are a leading cause of security breaches and data loss for organizations
of all types and sizes, we can’t continue to whistle past the graveyard. We want the
readers of this report to leverage the data to build a business case for an application
security program at their organization.

As with past SoSS reports, this analysis draws on continuously updated information in Veracode’s cloud-based appli-
cation security platform. Unlike a survey, the data comes from actual application security assessments conducted to
identify vulnerabilities and validate remediations. SoSS Volume 5 examines data collected over an 18 month period
from January 2011 through June 2012 from 22,430 application builds uploaded and assessed by our platform
(compared to 9,910 application builds analyzed in Volume 4, which was published in December 2011).

This report examines application security quality, remediation, and policy compliance statistics and trends. The data
analyzed represents multiple security testing methodologies (including static binary, dynamic and manual) on a wide
range of application types (web, mobile and non-web) and programming languages (including Java, C/C++, .NET,
PHP and ColdFusion). We also expanded our analysis of the mobile vulnerability landscape with sections on Android,
iOS and Blackberry applications. The resulting intelligence is unique in the breadth and depth it offers.

Readers of Volume 5 will notice an increased focus on vulnerability distribution trends for each language. Also, new
to this Volume is an analysis of the percentage improvement in the vulnerability distribution between the first and
second application builds. This metric should provide some perspective on which vulnerabilities organizations chose
to fix upon receiving the results from their first submission. These new visualizations and analysis are in response
to customer questions about demonstrating the impact of security programs on enterprise risk profiles.

Veracode’s data analytics team is always looking for new perspectives on security metrics. We welcome reader
questions, comments and ideas so that we can continually improve and enrich the coverage, quality and detail
of our analysis.

Veracode State of Software Security Report: Volume 5

2

70% of applications failed to comply with enterprise security policies on first submission.

This represents a significant increase in the failure rate of 60% reported in Volume 4. While the applications may
eventually become compliant, the high initial failure rate validates the concerns CISOs have regarding application
security risks since insecure applications are a leading cause of security breaches and data loss for organizations
of all types and sizes.

Prediction: Average CISO Tenure Continues to Decline. The average tenure of a CISO is 18 months, and more CISO
jobs will be at risk given the current state of software security. The expansive threat profile associated with software
means the likelihood of CISOs being negatively affected by a high-impact security event has never been greater.

Recommendation: Driving up compliance with enterprise application security policies lowers the risk of high-impact
events. To accomplish this, CISOs and security professionals must work closely with their counterparts in Develop-
ment and Procurement to set security policies and enable internal and external developers to consistently comply
with those policies.

SQL injection prevalence has plateaued, affecting approximately 32% of web applications.

The downward trend in SQL injection that we reported in Volumes 3 and 4 has flattened. For six consecutive quarters,
from the first quarter of 2011 to the second quarter of 2012, the percentage of applications affected by SQL injection
has hovered around 32%. This should be a concern, as three of the biggest SQL injection attacks in 2012 resulted in
millions of email addresses, user names, and passwords being exposed and damaged the respective brands.

Prediction: The Rise of the Everyday Hacker. Once the sole domain of technical experts, now a simple search
for “SQL Injection Tutorial” enables anyone to exploit a serious vulnerability and wreak havoc. The data shows
that everyday hackers are on the rise, as Trustwave reported SQL injection to be the attack method for 26% of all
reported breaches in 2012. We predict that number to exceed 30% in 2013. SQL injection vulnerabilities are just
too easy to find and exploit.

Recommendation: Organizations should institute zero-tolerance policies for SQL injection vulnerabilities and employ
routine monitoring to detect vulnerabilities as new applications are deployed.

Veracode State of Software Security Report: Volume 5

3

Executive Summary
The following are some significant findings in the Veracode State of Software Security
Report Volume 5. Each finding is accompanied by a prediction for the next 12 to 18
months, where we sketch out the possible futures if the status quo continues. We
also provide recommendations for altering our predicted trajectory, because we can
change the future.

Key Findings

Eradicating SQL injection in web applications remains a challenge as organizations make tradeoffs around
what to remediate first.

The percentage of applications affected by SQL injection has hovered around 32% and cross-site scripting around
67% for the last six quarters. For the first time we are reporting improvement percentages by language to illustrate
which flaws organizations are choosing to fix after receiving results from their first submission. Java, representing
56% of web applications, showed 16% improvement in SQL injection and 14% improvement in cross-site scripting
between the first and second submission. .NET, representing 28% of web applications, showed a 25% improvement
in SQL injection and 15% improvement in cross-site scripting.

Prediction: Decreased Job Satisfaction/Higher Turn-over for Security Professionals. The challenge is daunting.
Companies face a seemingly ever-expanding threat profile brought on by new applications and application updates
containing easy to exploit flaws such as SQL injection (26% of all 2012 reported breaches according to Trustwave).
This can create a very frustrating work environment for security pros. The desire to find roles where their efforts
will bear more fruit and where success is apparent will drive increased turnover among security pros. There is some
good news, however. According to the Bureau of Labor Statistics,3 the employment segment that includes informa-
tion security analysts is projected to grow 22% between 2010 and 2020, faster than the average for all occupations.

Recommendation: Making a difference as a security professional often means building relationships with development
executives. Instead of taking a “scan and scold” approach, the program goal should be improving overall developer pro-
ductivity by efficiently integrating security remediation into existing development methodologies. Getting development
executives focused on process integration, knowledge transfer, remediation support and incentives for secure code
creation as key success criteria would represent a significant breakthrough in the relationship.

Cryptographic issues affect a sizeable portion of Android (64%) and iOS (58%) applications.

Using cryptographic mechanisms incorrectly can make it easier for attackers to compromise the application. For
example, cryptographic keys can be used to protect transmitted or stored data. However, practices such as hard-cod-
ing a cryptographic key directly into a mobile application can be problematic. Should these keys be compromised, any
security mechanisms that depend on the privacy of the keys are rendered ineffective.

Prediction: Default Encryption, Not “Opt-in,” Will Become the Norm. Eavesdropping on mobile communications
can make it easier for attackers to design successful social engineering attacks against key employees. There is a
staggering amount of transmitted data at risk, considering the growth of open (i.e. easy to eavesdrop) Wi-Fi networks
in combination with the number of social network users (Facebook 1.2B; Twitter 190M tweets/day) and the number
of mobile devices (Cisco4 predicts that by the end of 2013, the number of mobile devices will exceed the number
of people on earth—7.1B). These concerns have prompted companies like Twitter and Facebook to encrypt all traffic
by default, despite the additional computing power required to encrypt every connection. As more business is
conducted through applications resident on personal mobile devices, we expect enterprises to insist on mobile
applications that force encryption to protect data in motion.

Recommendation: Developers and security professionals should expect data encryption to be involved in all aspects
of designing the business user’s experience with mobile applications. From a data in motion perspective, this would
include understanding the performance impact and incremental infrastructure costs of encrypting traffic between the
mobile application and the server side application. From a data at rest perspective, additional attention should be paid
to the cryptographic techniques used to protect the application itself from unintended data disclosure.

Veracode State of Software Security Report: Volume 5

4

3 www.bls.gov/ooh/computer-and-information-technology/information-security-analysts-web-developers-and-computer-network-architects.htm
4 www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html

Security of Applications
The evidence linking organizational intrusions and data breach events to application
security issues continues to grow. Web-based intrusions and hacking in general account
for 52% of the breaches in 2011 and 2012 tracked by Open Security Foundation’s
DataLossDB (Figure 1).

While these categories are extremely broad, hacking and web-based intrusions often involve exploiting software
vulnerabilities. Reports published by companies that conduct actual breach investigations provide additional insight.
The Verizon Data Breach Report, released in March 2012, indicated that 81% of attacks utilized some sort of hacking.
This section explores application compliance with standard policies, remediation submission rates and security quality
scores to shed some light on why this connection exists.

Compliance with Standard Policies Upon First Submission

Figure 2 illustrates the compliance upon initial application submission against two standard policies.5 Web applications
are assessed against the OWASP Top 10 and only 13% complied on first submission. Non-web applications are
assessed against the CWE/SANS Top 25 and 31% complied on first submission. Only 30% of applications complied
with enterprise defined policies. Compliance with policies upon first submission of an application can be a good
indicator of the success or failure of “building-in” security as part of the software development lifecycle (SDLC).

Veracode State of Software Security Report: Volume 5

5

45% Hack

15% Stolen Item

12% Fraud-SE

7% Web

5% Lost or Missing Item

5% Disposal Item

4% Unknown

2% Snail Mail and Fax

2% Email

2% Virus

1% Skimming and Snooping

Data Loss Breaches Categorized by Root Cause

Figure 1: Data Loss Breaches Categorized by Root Cause (Source: DataLossDB)

5 More details about how the Veracode platform determines policy compliance can be found in the Appendix.

Because security flaws that are eliminated before deployment, or never created in the first place, are much less expen-
sive to remediate, thus building remediation into the SDLC at an early stage is often a key goal for most organizations.
Yet, with more than two thirds of the applications failing to comply, our results show that secure software development
practices are still not as widespread as they should be. While applications may eventually become compliant, the high
initial failure rate validates the concerns CISOs have regarding the business risks related to application security.

The OWASP Top 10 compliance rate did not change significantly from Volume 4 (14%). In contrast, the percentage
of applications passing enterprise policies declined significantly from Volume 4 (40%). Similarly, the percentages
of non-web applications that complied with SANS/CWE policy were respectively 42% and 31% in Volumes 4 and 5,
which is highly statistically significant decrease. We decided to investigate whether language or supplier types where
potential drivers of the decrease in SANS/CWE policy compliance. Our analysis6 suggests that the major contributors
to this Vol4 to Vol5 decrease in compliance rate were as follows:

• There is evidence that Language (99.9% confidence level) influences CWE/SANS compliance with C/C++ being
the most significant factor. This means that C/C++ applications, which represent 29% of non-web applications
in our dataset, had a significant impact on driving down the CWE/SANS compliance rate from Volume 4.

• There is no compelling evidence that software supplier types (internally developed, commercial, outsourced,
and open source) influence CWE/SANS compliance.

Another possible factor in the decrease of SANS/CWE policy compliance could be the increase in the number of first
submissions in our sample set. The Volume 5 data had 75% more first builds than Volume 4. This increase in first
builds suggests more broad use of the service by a wider variety of companies, perhaps with higher variation in
secure software development practices.

Veracode State of Software Security Report: Volume 5

6

6 The analysis that we performed used a generalized linear model to perform logistic regression on a proportional response variable (SANS Compliance)
with categorical explanatory variables (Volume, Flaw Category, Industry, Supplier, and Language). See Appendix for additional detail.

Compliance with Policies Upon First Submission

Figure 2: Compliance with Policies Upon First Submission

Enterprise Policy

CWE/SANS Top 25

OWASP Top 10

0% 20% 40% 60% 80% 100%

71%29%

69%31%

70%30%

87%13%

Compliant Out of Compliance

Remediation Analysis

We frequently get questions from customers and analysts on whether discovered vulnerabilities are actually
remediated and whether those remediations are validated through additional testing. To shed some light on this
issue, we start by examining how frequently organizations resubmit applications following the initial analysis. These
resubmitted applications typically contain a combination of security remediations for previously reported vulnerabili-
ties. Resubmitted applications may also contain new or altered code components to address non-security issues
and new code components representing new functionality.

One might expect that more companies would resubmit higher percentages of their very high criticality applications
than they would their medium criticality applications. If this expectation were true then one would anticipate the
distribution pattern for medium and very high criticality applications to look very different (possibly a classic bell
curve for the medium criticality applications and an exponential curve for the very high criticality applications). At the
very least, one might expect variability in resubmission rate to decrease as application criticality increases. The data
does not support those expectations. Figure 3 shows statistically insignificant differences in the distribution patterns.
Roughly 45% of organizations resubmit 91-100% of their applications regardless of the business criticality. In Volume
4 we reported that the very high group was slightly different from the high and medium groups, since over 50%
of companies resubmitting 91-100% of their very high criticality applications, however that slight difference has
disappeared in Volume 5.

Veracode State of Software Security Report: Volume 5

7

50

40

30

20

10

0

P
E

R
C

E
N

T
O

F
O

R
G

A
N

IZ
A

T
IO

N
S

PERCENT OF APPLICATIONS RESUBMITTED

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Medium Very HighHigh

Percentage of Applications Resubmitted by Business Criticality

Figure 3: Percentage of Applications Resubmitted by Business Criticality

Security Quality Analysis

We continue to track the quarterly mean Veracode Security Quality Score (SQS) as a means of determining when
security quality becomes a standard part of developing software. We expect that when most organizations have built
security into their SDLC we will begin to see an upward trend in SQS developing. An upward trend would indicate
that applications from new Veracode customers and newly developed applications from existing customers are a less
significant force in dragging down the mean with very low scores. Figure 4 shows we still have a lot of work to do in
building in security. The best fit line across our analysis timeline has a p-value7 of 0.37 indicating that the trend is flat.
This flat trend is consistent with the trends reported in Volumes 3 and 4—there has been no increase or decrease in
the quarterly mean SQS since the fourth quarter of 2009.

Next we examine the progress an application makes build-over-build as the developers respond to findings and
attempt to remediate flaws using the median value of the Veracode Security Quality Score (SQS) as a progress
indicator. The distribution of the Veracode Security Quality Score by application build is shown as a whisker plot8

in Figure 5. The data shows statistically significant build-over-build improvement from the first to third builds. Builds
four through six remain statistically flat, followed by a marked improvement in builds seven and eight. The median
score decreased in build nine, however, it is still above the plateau of builds four through six. This pattern suggests
the security quality in applications with nine or more builds has been permanently improved even as functionality
in the form of new code is being added in the later builds.

Veracode State of Software Security Report: Volume 5

8

M
E

A
N

V
E

R
A

C
O

D
E

S
Q

S

2011-2 2011-3 2011-4 2012-1 2012-22011-1

100

80

60

40

20

0

QUARTERS

Veracode Security Quality Score Trend
p-value = 0.37

Figure 4: Veracode Security Quality Score Trend

7 See Appendix for definition.
8 See Appendix for definition.

The pattern of statistically significant improvement in security quality scores for builds one, two and three seen in
Figure 5 is consistent with the figures reported in Volumes 3. However, there are significant differences between
Volumes 4 and 5 in the patterns reported for later builds. In Volume 4 we saw an oscillating behavior with peaks
occurring at builds four, seven and nine. The Volume 4 pattern suggested that new functionality was introduced
in the build after each peak, which resulted in a new set of security flaws found and the consequently lower score.
It is not immediately clear what has caused this shift in pattern between Volumes 4 and 5. It could be that our
dataset for later application builds is richer in Volume 5 and therefore more representative of the actual improve-
ment pattern. It is also possible that developers are starting to introduce new code that does not suffer from the
vulnerabilities in the old code. The developers have learned from the mistakes and do not repeat them.

Veracode State of Software Security Report: Volume 5

9

100

80

60

40V
E

R
A

C
O

D
E

S
E

C
U

R
IT

Y
Q

U
A

LI
T

Y
S

C
O

R
E

BUILD NUMBER

1 2 3 4 5 6 7 8 9

Veracode Security Quality Score by Build

Figure 5: Veracode Security Quality Score by Build

Language Analysis
In this section we dive deeper into each language. For each language we look at the
distribution of each vulnerability category. We measure vulnerability distribution in
terms of share of vulnerabilities found in each language group.

We calculate this by first filtering our data by language. For each language we determine the total number of vulnera-
bilities found and the number vulnerabilities that belong to a specific category. These values allow us to calculate
the percentage share for each vulnerability category for that language. These vulnerability distribution calculations
allow us to make statements such as, 3% of vulnerabilities found in Java applications are SQL injection vulnerabilities
(Figure 6). The vulnerability distribution metrics also give us a historical perspective, since we have been reporting
them since Volume 3.

Another metric we explore is the vulnerability prevalence in terms of the percentage of applications affected by each
vulnerability category. To calculate this metric, we also begin by filtering our data by language. Then we identify how
many applications contain one or more vulnerabilities from each category, which allows us to calculate the percentage
affected. These calculations enable us to make statements such as: SQL injection vulnerabilities affect 31% of Java
applications (Figure 7).

Vulnerability distribution and prevalence information can be useful for planning purposes, particularly when internal
and/or industry-specific benchmarks9 are not readily available. Organizations can estimate the resource impact of
implementing or changing application security policies. Consider the situation of a security team writing a policy
aimed at eliminating SQL injection flaws and a development team writing their application in Java. The percentage
affected data tells the teams there is a 31% chance that their application will have SQL injection flaw. The vulnerabil-
ity prevalence data means that if the application does have SQL injection, it is likely that only 3% of the vulnerabilities
found will be SQL injection.

Finally, we investigate the percentage improvement in vulnerability distribution between an application’s first and
second build. This metric should provide some perspective on which vulnerabilities organizations chose to fix upon
receiving the results from their first submission. For each language, we looked at the subset of applications with their
first and second builds occurring within the analysis timeframe for this report. This means we excluded applications
with their first build occurring before January 2011 and applications with their second build occurring after June 2012.
We also excluded applications with components written in more than one language. Then we calculated the change in
vulnerability distribution from the first build to the second build. The percentage change will be affected by the volume
of flaws. For example, consider the case of a development team that has fixed 10 flaws between the first and second
build. If there were 20 flaws in the first build then the calculation would show a 50% improvement. However, if the
first build contained 100 flaws, then the calculation would show a 10% improvement. To acknowledge this impact
we indicate the top vulnerability categories in the percentage improvement charts. The percentage change may also
be affected by improvements to the Veracode platform, and we’ll discuss those improvements where applicable.

Veracode State of Software Security Report: Volume 5

10

9 The Veracode Analytics capabilities enable organizations to benchmark their internal application security metrics with industry benchmarks.

Java

Figure 6 shows that vulnerability distribution in Java applications has not significantly changed since Volume 3. The
cross-site scripting category consistently represents more than half of all vulnerabilities discovered in Java applications.
In the Volume 5 dataset, SQL injection makes its first appearance in the top 5 list at fifth place, replacing cryptographic
issues. Figure 7 shows code quality, CRLF injection and information leakage affecting the most applications with 82%,
68% and 58% respectively.

Veracode State of Software Security Report: Volume 5

11

Vulnerability Distribution Trends for Java Applications (Share of Total Vulnerabilities Found)

Volume 3Rank

4%

Volume 4

Cross-Site Scripting (XSS)

CRLF Injection

Information Leakage

Encapsulation

SQL Injection

Directory Traversal

Cryptographic Issues

1

2

3

4

5

6

7

3%

3%

Volume 5

50% 56% 51%

17% 16% 21%

14% 10% 12%

4%

5%

3%

2%

3%

3%

Figure 6: Vulnerability Distribution Trends for Java Applications (Share of Total Vulnerabilities Found)

Figure 8 indicates the untrusted search path category had the
highest improvement percentage from first to second application
build. Although this vulnerability category does not occur very
often (it is absent from Figure 6 and Figure 7) it contains some
very high severity flaws. For example, CWE-114 is defined as
executing commands or loading libraries from an untrusted source,
or in an untrusted environment, can cause an application to execute
malicious commands (and payloads) on behalf of an attacker.10

Figure 8 also shows an improvement percentage of 45% for CRLF
injection, which holds the second place in both Java vulnerability
distribution (21%) and prevalence (68%).

Veracode State of Software Security Report: Volume 5

12

Vulnerability Prevalence in Java Applications (Percentage of Applications Affected)

Figure 7: Vulnerability Prevalence in Java Applications (Percentage of Applications Affected)

Code Quality

CRLF Injection

Information Leakage

Cross-Site Scripting (XSS)

Cryptographic Issues

Directory Traversal

Insufficient Input Validation

Encapsulation

API Abuse

Credentials Management

Time and State

SQL Injection

Session Fixation

Race Conditions

OS Command Injection

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

55%

49%

44%

38%

37%

34%

34%

31%

29%

18%

9%

82%

68%

58%

57%

10 For the complete description see cwe.mitre.org/data/definitions/114.html

CRLF injection, which holds
the second place in both
Java vulnerability distribution
(21%) and prevalence (68%),
showed an improvement
percentage of 45% from first
to second submission.

.NET

The vulnerability distribution for .NET applications has not changed significantly over the last three Volumes
(Figure 9). Cross-site scripting (XSS) retains the highest share of vulnerabilities at 49%. However, the percentages
have been changing over time. Cross-site scripting and directory traversal categories have been slowly increasing
while information leakage and cryptographic issues have been slowly decreasing.

Veracode State of Software Security Report: Volume 5

13

Cross-site scripting and SQL injection
showed improvement from first to second
build in terms of share of vulnerabilities
discovered, but still affect 60% and 30%
of all .NET applications respectively.

Percent Improvement in Java Vulnerability Distribution from First to Second Submission

Figure 8: Percent Improvement in Java Vulnerability Distribution from First to Second Submission

Untrusted Search Path

CRLF Injection

Untrusted Initialization

Session Fixation

Dangerous Functions

Code Quality

Encapsulation

Credentials Management

Cryptographic Issues

API Abuse

SQL Injection

Insufficient Input Validation

Time and State

Cross-Site Scripting (XSS)

OS Command Injection

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

36%

28%

23%

23%

18%

18%

16%

15%

15%

14%

8%

90%

45%

45%

44%

Indicates categories with the highest vulnerability distribution in Java

In addition, 61% of .NET applications contain one or more XSS vulnerabilities (Figure 10). The high percentages in both
metrics indicate that cross-site scripting is a pervasive vulnerability, i.e. it occurs many times in many applications.
Figure 11 appears to indicate a fairly low percentage improvement (15%) between the first and second build for XSS.
When taken together, these three data points demonstrate the enormity of the task of removing cross-site scripting
from existing applications, because there are so many vulnerabilities to remediate.

Significantly, the top five categories that showed the most improvement are comprised of less than 10% of all
discovered flaws and affect at most 50% of all .NET applications (Figure 11). If you leave out SQL injection, the top
four categories that showed improvement comprise at most 20% of all .NET applications. Cross-site scripting and
SQL injection showed improvement in terms of share of vulnerabilities discovered, but still affect 60% and 30%
of all .NET applications respectively.

Veracode State of Software Security Report: Volume 5

14

Vulnerability Distribution Trends for .NET Applications (Share of Total Vulnerabilities Found)

Volume 3Rank Volume 4

Cross-Site Scripting (XSS)

Information Leakage

Directory Traversal

Cryptographic Issues

Insufficient Input Validation

SQL Injection

1

2

3

4

5

6

Volume 5

44% 47% 49%

23% 18% 14%

8%

11%

9%

11%10%

9%

6% 6%

5%<6%

6%

Figure 9: Vulnerability Distribution Trends for .NET Applications (Share of Total Vulnerabilities Found)

Veracode State of Software Security Report: Volume 5

15

Vulnerability Prevalence in .NET Applications (Percentage of Applications Affected)

Figure 10: Vulnerability Prevalence in .NET Applications (Percentage of Applications Affected)

Code Quality

Cryptographic Issues

Cross-site Scripting (XSS)

Information Leakage

Directory Traversal

Insufficient Input Validation

CRLF Injection

SQL Injection

Time and State

Credentials Management

Untrusted Search Path

OS Command Injection

Error Handling

Potential Backdoor

Buffer Overflow

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

56%

42%

40%

30%

22%

15%

11%

11%

5%

3%

1%

73%

62%

61%

60%

Percent Improvement in .NET Vulnerability Distribution from First to Second Submission

Figure 11: Percent Improvement in .NET Vulnerability Distribution from First to Second Submission

Buffer Overflow

Error Handling

Credentials Management

Dangerous Functions

SQL Injection

Potential Backdoor

Insufficient Input Validation

OS Command Injection

Code Quality

Cross-Site Scripting (XSS)

Cryptographic Issues

Time and State

Directory Traversal

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

25%

24%

23%

18%

17%

15%

13%

10%

4%

59%

50%

31%

30%

Indicates categories with the highest vulnerability distribution in .NET

C/C++

Vulnerability distribution for C/C++ applications has
changed significantly over the past three Volumes
(Figure 12). The buffer management errors category
has risen from fifth place in Volume 3 to second place
in Volume 5. Buffer overflow issues have fallen to third
place and cryptographic issues appear for the first time
in fifth place. While error handling issues retain the
top spot from Volume 4, the percentage share has
increased from 23% to 38%.

The vulnerability categories with the highest distribution also affect the highest percentage of applications (Figure 13),
from error handling affecting 77%, to numeric errors affecting 44%. One implication of this data for organizations
scanning C/C++ applications for the first time is that it is likely several of these vulnerabilities will be listed in the
assessment report.

Although Figure 13 shows API abuse affecting relatively few applications (7%), Figure 14 indicates a significant
percentage improvement from first to second submission in API abuse (85%). This is an example of how targeting
a few flaws (such as CWE 243: Creation of chroot Jail Without Changing Working Directory, which may allow
unauthorized access to data files) can significantly improve an application’s security posture.

Veracode State of Software Security Report: Volume 5

16

Vulnerability distribution for C/C++
applications has changed significantly
over the past three Volumes, with error
handling and buffer management errors
rising to the top of both the vulnerability
distribution and prevalence lists.

Vulnerability Distribution Trends for C/C++ Applications (Share of Total Vulnerabilities Found)

Volume 3Rank Volume 4

Error Handling

Buffer Management Errors

Buffer Overflow

Numeric Errors

Cryptographic Issues

Potential Backdoor

1

2

3

4

5

15

Volume 5

<1%

27%

20%

16%

26% 38%

23% 16%

18%

9% 4%

22%

14%

14%11% 14%

<1%

Figure 12: Vulnerability Distribution Trends for C/C++ Applications (Share of Total Vulnerabilities Found)

Veracode State of Software Security Report: Volume 5

17

Vulnerability Prevalence in C/C++ Applications (Percentage of Applications Affected)

Figure 13: Vulnerability Prevalence in C/C++ Applications (Percentage of Applications Affected)

Error Handling

Buffer Management Errors

Buffer Overflow

Cryptographic Issues

Numeric Errors

Directory Traversal

Time and State

Dangerous Functions

Code Quality

OS Command Injection

Untrusted Search Path

Race Conditions

Format String

API Abuse

Information Leakage

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

44%

40%

32%

30%

28%

26%

19%

16%

15%

7%

5%

78%

53%

48%

46%

Percent Improvement in C/C++ Vulnerability Distribution from First to Second Submission

Figure 14: Percent Improvement in C/C++ Vulnerability Distribution from First to Second Submission

API Abuse

Buffer Management Errors

Dangerous Functions

Directory Traversal

Code Quality

Buffer Overflow

Numeric Errors

Untrusted Search Path

Error Handling

Cryptographic Issues

Time and State

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

37%

34%

34%

33%

7%

4%

2%

89%

74%

53%

42%

Indicates categories with the highest vulnerability distribution in C/C++

PHP

Cross-site scripting has the largest share of total vulnerabilities found in PHP applications (Figure 15). The good
news is that the percentage continues to drop from 80% in Volume 3, to 75% in Volume 4, and to 60% in Volume 5.
Cryptographic issues debut at second place with 12% share. While, the share of SQL injection vulnerabilities remains
steady at 7% it drops to fifth place. 27% of PHP applications have SQL injection issues (Figure 16), with just over
half of those vulnerabilities remediated by the second submission (Figure 17).

Interestingly, with PHP we see a similar disconnect between the rankings of vulnerability categories by percentage
of affected applications and percent improvement. While XSS holds first place in both Figure 15 and Figure 16, its
improvement from build one to build two is in third place (Figure 17). Code injection is ranked second in Improvement
but sixth in percent affected applications. Two interpretations are possible. First, the two rankings are not exactly
apples to apples. In the case of percent affected applications, all flaws in a given vulnerability category much be fixed
to register a change in the metric; while fixing just one flaw in the Improvement metric will (other things being equal)
affect improvement. The second interpretation is that developers are not necessarily prioritizing eradication of all flaws
of a given category.

Veracode State of Software Security Report: Volume 5

18

Vulnerability Distribution Trends for PHP Applications (Share of Total Vulnerabilities Found)

Volume 3Rank Volume 4

Cross-Site Scripting (XSS)

Cryptographic Issues

Information Leakage

Directory Traversal

SQL Injection

Code Injection

1

2

3

4

5

6

Volume 5

80% 75% 60%

12%

3%

6%

4%

10%7%

9%

10%8%

7%2%1%

1%

Figure 15: Vulnerability Distribution Trends for PHP Applications (Share of Total Vulnerabilities Found)

Veracode State of Software Security Report: Volume 5

19

Vulnerability Prevalence in PHP Applications (Percentage of Applications Affected)

Figure 16: Vulnerability Prevalence in PHP Applications (Percentage of Applications Affected)

Cross-site Scripting (XSS)

Directory Traversal

Information Leakage

SQL Injection

Cryptographic Issues

Code Injection

OS Command Injection

Untrusted Initialization

Code Quality

Insufficient Input Validation

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

23%

21%

17%

3%

<1%

<1%

60%

47%

29%

27%

Percent Improvement in PHP Vulnerability Distribution from First to Second Submission

Figure 17: Percent Improvement in PHP Vulnerability Distribution from First to Second Submission

SQL Injection

Code Injection

Cross-Site Scripting (XSS)

OS Command Injection

Information Leakage

Directory Traversal

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

12%

3%

54%

29%

24%

18%

Indicates categories with the highest vulnerability distribution in PHP

ColdFusion

Cross-site scripting (XSS) has remained the dominant vulnerability category in ColdFusion applications assessed by
the Veracode platform. It accounts for 81% of all vulnerabilities found (Figure 18) and affects 94% of applications
(Figure 19). Fortunately, recent versions of the ColdFusion platform have built in several fixes and new features to
address the high occurrence of XSS. We expect the number of XSS vulnerabilities to decline as we update our scans
to reflect platform changes and as customers deploy newer platform versions.

We also found a much lower percentage of ColdFusion applications have been resubmitted for testing within our
reporting timeframe, therefore we are not reporting the percentage improvement data for ColdFusion. There are no
obvious language-specific reasons for low resubmission rates. However, there may be some organizational issues
at work, for example:

• The organizations may be focused on baselining and reporting their current security posture for compliance purposes
and have yet to allocate resources for remediation.

• The organizations are relying on network mitigations, such as creating WAF rules based on Veracode’s findings, until
either the development organization or software supply chain can be influenced to remediate the identified flaws.

Neither of these situations is ideal, as the ultimate goal of an application security program is to improve the organiza-
tion’s security posture over time. Achieving that goal requires vulnerabilities found during the testing process to be
remediated, preferably on a prioritized11 remediation schedule so that developers can focus on the most impactful
remediations first.

Veracode State of Software Security Report: Volume 5

20

Vulnerability Distribution Trends for ColdFusion Applications (Share of Total Vulnerabilities Found)

Volume 3Rank Volume 4

Cross-Site Scripting (XSS)

SQL Injection

Information Leakage

Directory Traversal

CRLF Injection

OS Command Injection

1

2

3

4

5

6

Volume 5

89% 87% 81%

9%

<1%

<1%

1%

5%1%

2%

8%9%

2%1%

1%

<1%

1%

Figure 18: Vulnerability Distribution Trends for ColdFusion Applications (Share of Total Vulnerabilities Found)

11 The Veracode platform’s “Fix First” analysis automatically prioritizes an application’s vulnerability results based on severity and effort to fix.

Veracode State of Software Security Report: Volume 5

21

Vulnerability Prevalence in ColdFusion Applications (Percentage of Applications Affected)

Figure 19: Vulnerability Prevalence in ColdFusion Applications (Percentage of Applications Affected)

Cross-Site Scripting (XSS)

SQL Injection

Information Leakage

Directory Traversal

OS Command Injection

CRLF Injection

Code Quality

Cryptographic Issues

Insufficient Input Validation

Encapsulation

Time and State

API Abuse

Credentials Management

Race Conditions

Session Fixation

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

20%

20%

17%

12%

12%

12%

11%

11%

10%

9%

4%

95%

72%

62%

22%

Application Types
In this section we take a closer look at three types of applications: mobile, web and
non-web. For each application type we start with a brief discussion of the threat
landscape and then explore the available vulnerability data.

Mobile Threat Landscape

The mobile threat landscape has three distinct areas: mobile malware, application behaviors, and code vulnerabilities.
Each of these areas is a risk to the enterprise that is specific to the mobile space and each manifests itself in a
slightly different attack model. Since the risk and attack models are slightly different, enterprises should consider
a multi-pronged approach to applying preventative security controls.

The traditional, signature-based malware detection methodology is broken in that modern mobile malware is designed
to easily evade signature-based detection. Device vendors have adopted different approaches in attempt to minimize
the malware proliferation. Apple adopted the walled approach, in that it has strict controls over which applications are
approved for listing in its App Store. However, it is not clear what security measures are being checked during this
approval process. Android is more open with more distribution channels and third party app stores. Google Bouncer12

has some static testing but they are trying to balance turnaround time and security—there is research that shows that
this project has a low detection rate of 15.32% (www.cs.ncsu.edu/faculty/jiang/appverify). Both iOS and Android plat-
forms have built in security features such as kill switches to remove identified malware applications from mobile phones.

The behavioral aspects of the threat landscape are particularly important. It is not possible to determine whether
data exfiltration is part of the intended user experience. For example, the application FourSquare’s transmission
of a phone’s GPS location is a core component of the functionality delivered to the user. On the other hand if the
application is a single-user solitaire game, then the transmission of the phone’s GPS location may signify malicious
behavior. Having a control point for determining the behavioral aspects of mobile apps may be one reason that
enterprises are interested in creating their own internal app stores. An enterprise operated app store could potentially
give the enterprise a control point to implement a zero trust model for adopting mobile applications. In a zero trust
model, every new application is treated as if it is malware and put into the hands of a malware analyst. The analyst
would initially conduct a behavioral analysis, (with static testing tools to understand code and data flows and dynamic
testing tools to understand the runtime behavior) and then add human intelligence to determine what the application
does, how it maps to malicious intent and what the risk is to their enterprise.

In terms of code vulnerabilities, the Cloud Security Alliance Mobile Working Group released findings13 in October
2012 that data loss from missing mobile devices ranks as the top threat related to mobile devices for enterprises.
The number two and three threats were mobile malware and data leakage due to poorly written third party applica-
tions. In the next section we examine the vulnerability distribution and prevalence in mobile applications scanned
by the Veracode platform.14

Veracode State of Software Security Report: Volume 5

22

12 Android and Security, by Hiroshi Lockheimer, VP of Engineering, Android, February 2012. See googlemobile.blogspot.com/2012/02/android-and-security.html
13 cloudsecurityalliance.org/csa-news/data-loss-mobile-ranks-top-threat-enterprises
14 Note that the analysis in this section does not include vulnerability analysis from our recent Marvin Mobile acquisition.

State of Mobile Application Security

First we examine the vulnerability distribution in terms of share of total vulnerabilities discovered across all applica-
tion builds associated with each mobile platform. In Volume 5, we have enough data on all three platforms to provide
a statistically sound basis for comparison.

Figure 20 shows all three mobile platforms that we analyzed share cryptographic issues and information leakage
in the Top 5 list of vulnerabilities as measured by percent of total vulnerabilities found. As jailbreaking becomes
more common practice and new features such as surviving reboots are supported, cryptographic issues significantly
weaken data protection. Attackers with physical control of a mobile device for a small amount of time can jailbreak
it and install a backdoor with keyloggers or other malware and/or copy the content. Both cryptographic issues and
information leakage vulnerabilities increase the attack surface for mobile applications, and are two of Cloud Security
Alliance’s top five identified threats to mobile devices.

In Volume 4 we published our first analysis of Android applications and focused on cryptographic issues and data
exfiltration (i.e. transmission of potentially sensitive information off the device). At the time we reported that 61%
of Android applications contained at least one insufficient entropy issue and 39% had potential data exfiltration
issues. Figure 21 shows that these categories are still cause for concern. Cryptographic issues affect 64% of
Android applications, while information leakage issues occur in 26% of applications.

Veracode State of Software Security Report: Volume 5

23

Vulnerability Distribution for Mobile Platforms (Share of Total Vulnerabilities Found)

CRLF Injection 37%

Cryptographic Issues 33%

Information Leakage 10%

SQL Injection 9%

Time and State 4%

Information Leakage 62%

Error Handling 20%

Cryptographic Issues 7%

Directory Traversal 6%

Buffer Management Errors 3%

Cryptographic Issues 47%

Information Leakage 47%

Directory Traversal 3%

Insufficient Input Validation 2%

Credentials Management <1%

Figure 20: Vulnerability Distribution for Mobile Platforms (Share of Total Vulnerabilities Found)

Android iOS Java ME

Cryptographic issues also affect 58% of iOS applications
(Figure 22). These are common coding mistakes that can be
readily fixed. A hard-coded key is much simpler to extract from
a mobile application than from a J2EE web application since the
mobile application can simply be copied from the mobile device.
Once these keys are compromised any security mechanisms
dependent on the secrecy of the keys are rendered ineffective.

The vulnerability landscape for iOS is somewhat different than Android in part because the differences in the
languages used (Objective C in the case of iOS and Java in the case of Android). For example, Figure 22 shows iOS
applications are more susceptible to error handling and credentials management, than Android applications. Similarly,
Android developers must pay more attention to SQL injection and code quality issues than iOS developers.

Veracode State of Software Security Report: Volume 5

24

Android Vulnerability Prevalence (Percentage of Applications Affected)

Figure 21: Android Vulnerability Prevalence (Percentage of Applications Affected)

Code Quality

Cryptographic Issues

CRLF Injection

SQL Injection

Information Leakage

Directory Traversal

Time and State

Cross-Site Scripting (XSS)

Authorization Issues

Credentials Management

Encapsulation

Session Fixation

Dangerous Functions

API Abuse

Insufficient Input Validation

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

26%

14%

11%

8%

7%

7%

4%

4%

1%

1%

1%

76%

64%

62%

31%

Cryptographic issues affect a
sizeable portion of Android (64%)
and iOS (58%) applications.

While the number of iOS and Android applications submitted for testing has grown dramatically over our reporting
periods, the same has not been true for BlackBerry applications. The data we collected from BlackBerry applications
is relatively small, however, we want to give readers some indication of the vulnerability categories being discovered
(Figure 23). Due to the limited amount of data, we expect the statistics to experience some variability and we will
assess the value of reporting BlackBerry statistics in future reporting periods.

Veracode State of Software Security Report: Volume 5

25

iOS (ObjectiveC) Vulnerability Prevalence (Percentage of Applications Affected)

Figure 22: iOS (ObjectiveC) Vulnerability Prevalence (Percentage of Applications Affected)

Error Handling

Cryptographic Issues

Information Leakage

Credentials Management

Numeric Errors

Buffer Management Errors

Code Quality

Buffer Overflow

Directory Traversal

Time and State

Format String

Untrusted Search Path

Race Conditions

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

13%

11%

8%

6%

4%

2%

1%

1%

1%

76%

58%

42%

17%

Blackberry Vulnerability Prevalence (Percentage of Applications Affected)

Figure 23: Blackberry Vulnerability Prevalence (Percentage of Applications Affected)

Information Leakage

Cryptographic Issues

Code Quality

Directory Traversal

Insufficient Input Validation

Time and State

CRLF Injection

Credentials Management

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

7%

2%

2%

2%

77%

40%

28%

21%

Veracode State of Software Security Report: Volume 5

26

Web Application Threat Landscape

Exploitation of web application vulnerabilities continues to
be a significant threat for organizations. The Web Application
Security Consortium continually tracks media reported security
incidents that can be associated with web application security
vulnerabilities in the Web Hacking Incident Database (WHID).15

Figure 24 illustrates the trends in the top attack techniques,
which enables organizations to take a risk-based approach
to application security testing and subsequent remediation.

45% of the incidents occurring in 2012 are currently categorized as unknown, meaning that there is not yet enough
information available to conclusively determine the attack method. The consortium updates the attack method
classification as those breaches are investigated. Therefore, it is likely that many of those unknown attacks used
one of the other popular techniques listed. The listing shows there is a limited set of vulnerability categories that are
exploited at scale; therefore an application security program that covers the top vulnerability categories can reduce
the attack surface in a cost-effective manner. This is where most organizations should start when designing an initial
application security policy to address the current threat space.

According to WHID, 10% of the
incidents occurring in 2012 are
categorized as SQL injection
attacks, yet millions of records
are leaked through SQL injection
attacks during 2012.

15 projects.webappsec.org/w/page/13246995/Web-Hacking-Incident-Database

Trends in Attack Methods from 2010 to 2012

2010Rank 2011

Unknown

Denial of Service

SQL Injection

Stolen Credentials

Brute Force

Banking Trojan

Cross-Site Scripting (XSS)

1

2

3

4

5

6

7

2012

20% 34% 45%

3%

23%

2%2%

5%

16% 10%

6% 3%

3%5%

28%

20%

17%

2%

3%

Figure 24: Trends in Attack Methods from 2010 to 2012 (Source: WHID)

Veracode State of Software Security Report: Volume 5

27

The rise in Denial of Service attacks appears to be evidence of the rising activity of hacktivist groups such as
Anonymous. At the time of writing, WHID contained 82 records associated with Anonymous attacks in 2012.
10% of the incidents occurring in 2012 are categorized as SQL injection attacks, down from 23% in 2011, however
it remains in third place in spite of the percentage drop. Figure 25 illustrates how devastating SQL injection attacks
can be to organizations.

Figure 25: Three of the Biggest SQL Injection Attacks in 2012

THREE OF THE BIGGEST SQL INJECTION ATTACKS IN 2012

#PROJECTWHITEFOX

OF RECORDS AFFECTED

1.6 MILLIONDEC 2012

3

1
GAMIGO: HAMBURG GERMANY JULY 2012

OF RECORDS
AFFECTED HASHED PASSWORDS

11 MILLION
EMAIL ADDRESSES

8.2 MILLION

ACCESSED

Names, email addresses, home
addresses, passwords, the SQL
Injection vulnerable links, and more
were posted on the internet.

ACCESSED

Millions of passwords

ACCESSED
Email addresses, usernames
and encrypted passwords

#ProjectWhiteFox will conclude
this year’s series of attacks by
promoting hacktivism worldwide
and drawing attention to the
freedom of information on the net.”
Team GhostShell

“Hackers gained
access to 31 targets
including NASA,
the FBI, Interpol,
the Pentagon and
numerous other
educational and
government
organizations.

Hacker “8in4ry_Munch3r” accessed
user account credentials.

#LINKEDIN

OF RECORDS AFFECTED

6.5 MILLIONJUNE 2012

2

On a grading scale of A through F, experts say,
LinkedIn, eHarmony and Lastfm.com would get,
at best, a ‘D’ for password security.”
New York Times

“

It’s the largest leak I’ve
ever actually seen.”
Steve Thomas, Internet
Security Expert, PwnedList

“

Russian hacker “dwdm” accessed and
leaked millions of passwords

Veracode State of Software Security Report: Volume 5

28

State of Web Application Security

Figure 26 shows how the top ten vulnerability categories for web applications have varied over the last three SoSS
volumes. Not much has changed. The top five categories remain the same as Volume 4. Cross-site scripting and
information leakage are at the top with 67% and 65% respectively. Volume 5 reporting includes two additional
CWE categories associated with the insufficient input validation category which vaulted the category to sixth place.
API abuse dropped just out of the top ten.

Top Vulnerability Categories (Percentage of Affected Web Application Builds)

Volume 3Rank Volume 4

Cross-Site Scripting (XSS)

Information Leakage

CRLF Injection

Cryptographic Issues

Directory Traversal

Insufficient Input Validation

SQL Injection

Time and State

Credentials Management

Encapsulation

API Abuse

1

2

3

4

5

6

7

8

9

10

11

Volume 5

54%

55%

66%

32%30%31%

28%27%30%

26%25%23%

25%25%22%

23%24%22%

49%

43%38% 32%

65%

58% 57%

51% 53%

49%47%

73% 68% 67%

70%

Figure 26: Top Vulnerability Categories (Percentage of Affected Web Application Builds)

The quarterly trend for the percentage of applications affected by cross-site scripting (XSS) remains statistically flat
with a p-value of 0.441 (Figure 27), as it has been in both Volume 3 and 4. Although this vulnerability is fairly easy to
fix, it is often given a lower remediation priority to other vulnerabilities because attackers are not leveraging them as
much in profit-driven attack scenarios.16 However there are indications that attacks on XSS vulnerabilities are on the
rise. According to the Microsoft Security Intelligence Report Vol 1317 there has been a significant increase in reported
XSS cases over the past two years. Both Microsoft and Google have added filters to their browsers to block some
types of XSS attacks. However, these mitigations should not be viewed as permanent defenses because not all
users will implement the filters and filtering capabilities can be bypassed. The best protection is still eliminating
the flaws and using secure coding techniques to prevent the creation of new flaws.

Figure 28 shows the downward trend for SQL injection seen in past Volumes has flattened. For six consecutive
quarters, from the first quarter of 2011 to the second quarter of 2012, the percentage of applications affected by
SQL injection has hovered around 32% (with a p-value of 0.868). In Volume 3 we reported SQL injection decreasing
at a rate of 2.4% per quarter. In Volume 4 the downward trend was still visible, going from 38% of applications
affected in the fourth quarter of 2009 to 32% in the third quarter of 2011.

Veracode State of Software Security Report: Volume 5

29

16 Trustwave 2012 Global Security Report
17 www.microsoft.com/security/sir/default.aspx

100

80

60

40

20

0

QUARTERS

2011-1 2011-2 2011-3 2011-4 2012-1 2012-2

P
E

R
C

E
N

T
A

FF
E

C
T

E
D

W
E

B
A

P
P

B
U

IL
D

S

Quarterly Trend for Cross-Site Scripting (XSS) Prevalence (Percentage of Affected Web Applications)
p-value = 0.441

Figure 27: Quarterly Trend for Cross-Site Scripting (XSS) Prevalence (Percentage of Affected Web Applications)

The trend data reported here reveals that eradicating XSS
and SQL injection continues to be a significant challenge.
Even with increased attention and media coverage link-
ing high profile data breaches to XSS and SQL injection
vulnerabilities, there has not been a dramatic reduction
in the occurrence of these critical vulnerabilities.

There may be a few factors keeping these trends
relatively constant over time, for example:

• An influx of web applications. It is likely that a significant portion of our dataset includes web applications that have
never been tested before.

• Expansion of web assessment focus. Security teams are beginning to expand their focus from analyzing a few
critical web applications to analyzing the entire website portfolio. This observation implies that we are seeing
assessments of many more web applications that were built before security policies were implemented. As these
web applications are tested for the first time, we are logging many more instances of XSS and SQL injection.

• Frequent web application changes. Agile development techniques drive more new and updated web applications
online with increasing frequency. An enterprise web application portfolio can change from week to week. This
means most enterprise portfolios have a built-in influx of new vulnerabilities. Until secure coding techniques go
from being recommended best practices to standard web application development practices, CISOs will struggle
with maintaining constant vigilance over the website portfolios having a constant stream of new vulnerabilities.

Veracode State of Software Security Report: Volume 5

30

Eradicating SQL injection and cross-site
scripting remains a challenge as the
vulnerability prevalence trends remain
flat for the last 6 quarters. SQL injection
has hovered around 32% and cross-site
scripting around 67%.

100

80

60

40

20

0

QUARTERS

2011-1 2011-2 2011-3 2011-4 2012-1 2012-2

P
E

R
C

E
N

T
A

FF
E

C
T

E
D

W
E

B
A

P
P

B
U

IL
D

S

Quarterly Trend for SQL Injection Prevalence (Percentage of Affected Web Applications)
p-value = 0.868

Figure 28: Quarterly Trend for SQL Injection Prevalence (Percentage of Affected Web Applications)

Non-Web Applications Threat Landscape

While most of the media attention focuses on incidents perpetrated by external attackers, organizations must also
protect themselves from internal attackers. The threat landscape for applications that are internal to an organization is
much more difficult to report on in a comprehensive manner. Most organizations are not willing or able to share relevant
information in a public forum in spite of repeated calls for information sharing by law enforcement agencies.18 Organiza-
tions rightfully are concerned about the brand damage of reporting data breaches, particularly those caused by insiders
capable of exploiting vulnerabilities in back-office applications. Indeed the 2011 CyberSecurity Watch Survey19 reported
that 46% of respondents considered insiders a more critical threat than external hackers.

State of Non-Web Application Security

Figure 29 shows the trends in the top vulnerability categories for
non-web applications over the last three Volumes. Cryptographic
issues and directory traversal have remained the top two vulnerability
categories for the last three Volumes, affecting 47% and 38% of all
non-web applications in the current reporting period. Information
leakage (26%) takes the third spot from error handling, which drops
to fourth place. Buffer overflow dropped out of the top ten for the
first time in this volume, and is replaced by SQL injection which is
now affecting 16% of non-web applications.

The good news is that the percentage of applications with buffer management errors is declining, from 20% in
Volume 3 to 13% in Volume 5. However, the rise in the percentage of applications containing information leakage
and SQL injection vulnerabilities is disturbing since applications are the conduit through which attackers gain access
to confidential or proprietary information.

It is noteworthy that the percentages reported in Figure 29 are generally lower than those reported in our software
supply chain feature supplement published in November 2012. For example, cryptographic issues affected 62% of
vendor supplied applications but only 47% of all applications (which include internally developed, outsourced, and
open source applications in addition to vendor supplied applications). The relatively higher percentages reported in
the supplement demonstrate the need for vendors to continue to work towards developing more secure software.

In Volume 5 we corrected a mistake in how the past SoSS analysis logic was counting potential backdoors. The
correction accounts for the significant decline in the percentage of applications affected.

Veracode State of Software Security Report: Volume 5

31

Cryptography remains the
top vulnerability category for
non-web applications. 47% of
non-web applications contain
at least one vulnerability in
this category.

18 www.fbi.gov/news/speeches/combating-threats-in-the-cyber-world-outsmarting-terrorists-hackers-and-spies
19 www.cert.org/archive/pdf/CyberSecuritySurvey2011.pdf

Veracode State of Software Security Report: Volume 5

32

Top Vulnerability Categories (Percentage of Affected Non-Web Application Builds)

Volume 3Rank Volume 4

Cryptographic Issues

Directory Traversal

Information Leakage

Error Handling

Time and State

OS Command Injection

SQL Injection

CRLF Injection

Credentials Management

Buffer Management Errors

Buffer Overflow

Numeric Errors

1

2

3

4

5

6

7

8

9

10

12

13

Volume 5

24%

23%

34%

16%15%19%

15%15%18%

14%14%18%

13%13%15%

11%11%

10%

19%

17%20% 17%

38%

28% 26%

24% 23%

18%22%

53% 46% 47%

36%

Figure 29: Top Vulnerability Categories (Percentage of Affected Non-Web Application Builds)

In Figure 2 we saw that 69% of non-web applications contain at least one flaw in a vulnerability category appearing
on the 2011 CWE/SANS Top 25 list of most dangerous software errors. Figure 30 provides more details, by
showing the percentage of applications affected by vulnerability categories which appear on the CWE/SANS list.
Vulnerabilities that appear on the CWE/SANS list are relatively easy to find and exploit for malicious actors with
access to the installed software.

Veracode State of Software Security Report: Volume 5

33

Vulnerability Categories on the 2011 CWE/SANS Top 25 List (Percentage of Applications Affected)

Figure 30: Vulnerability Categories on the 2011 CWE/SANS Top 25 List (Percentage of Applications Affected)

Cryptographic Issues

Directory Traversal

OS Command Injection

SQL Injection

Credentials Management

Buffer Management Errors

Buffer Overflow

Numeric Errors

Insufficient Input Validation

Dangerous Functions

Format String

10%0% 20% 30% 40% 50% 60% 70% 80% 90% 100%

14%

14%

11%

9%

9%

7%

3%

49%

38%

16%

16%

Appendix A: About the Dataset
Figure 31 illustrates how the language and platform distribution has evolved since
Volume 3. Overall, only small shifts in percentages occurred between Volume 4 and 5.
Java and .NET applications continue to dominate, together representing 77% of the
assessments conducted. C/C++ applications are holding steady at 9%. Mobile
applications have increased to 3%.

All applications analyzed by Veracode are classified according key characteristics such as whether the application
is web-facing, whether it is developed for a mobile platform (Android, iOS), the remaining applications are typically
developed to operate behind the firewall (although they can include web-based user interfaces). Figure 32 shows
that 73% of the applications assessed were web applications, which is slightly down from 75% in Volumes 3 and 4.
Mobile application assessments are filling the gap, growing from <1% in Volume 4 to 3% in the Volume 5.

Veracode State of Software Security Report: Volume 5

34

Distribution by Language Apps

9% 9%
2%

2%

6%12% 2%

3%

26%

27%

27% 9% 8%

Volume 3

Volume 4

Volume 5

0% 20% 40% 60% 80% 100%

53%

52%

50%
3%

Java .NET C/C++ ColdFusion PHP Mobile (Android + iOS + JavaME)

73% Web

24% Other

3% Mobile

Distribution of Web, Mobile and Other Applications

Figure 32: Distribution of Web, Mobile and Other Applications

Figure 31: Distribution by Language Apps

Figure 33 and Figure 34 show that Java is the most popular language for both web (56%) and non-web applications
(39%) tested by the Veracode platform. 28% of web applications and 29% of non-web applications were written in
.NET. C/C++ accounted for 29% of non-web applications but only 2% of web applications.

Figure 35 shows the platform distribution of mobile applications in our dataset, with iOS representing the largest
share (56%). At first glance, the relatively large percentage of applications developed on iOS may appear surprising,
since one would expect that most enterprises and software vendors to create and test Android and iOS versions
of their mobile applications. Veracode’s partnership with Good Technology to test iOS applications for inclusion in
enterprise app stores accounts for this imbalance.

Veracode State of Software Security Report: Volume 5

35

56% Java

28% .NET

10% PHP

 4% ColdFusion

 2% C/C++

Distribution of Web Applications by Language

Figure 33: Distribution of Web Applications by Language

39% Java

29% .NET

 29% C/C++

3% PHP

Distribution of Non-Web Applications by Language

Figure 34: Distribution of Non-Web Applications by Language

56% iOS

34% Android

10% J2ME

Distribution of Mobile Applications by Platform

Figure 35: Distribution of Applications by Supplier

Figure 36 shows approximately 22% of the applications analyzed were identified as third-party (commercial, open
source and outsourced). The percentage of outsourced applications remains low at 1%. Oftentimes the outsourced
nature of applications labeled “internally developed” is only revealed during remediation when an outsourced party
is assigned the task of fixing vulnerabilities. Hence we believe that the true percentage of “outsourced” code is
higher than represented.

Figure 37 represents the distribution of applications by industry segment. Other and Finance represent the largest
segments at 38% and 27% respectively.

Veracode State of Software Security Report: Volume 5

36

78% Internally Developed

14% Commercial

 7% Open Source

 1% Outsourced

Distribution of Applications by Supplier

Figure 36: Distribution of Applications by Supplier

38% Other

27% Financial Services

9% Software

6% Technology

6% Telecommunications

4% Government

3% Business Services

 3% Education

2% Healthcare

2% Entertainment and Media

Distribution of Applications by Industry

Figure 37: Distribution of Applications by Industry

Appendix B: Understanding How the Veracode
Platform Determines Policy Compliance
The Veracode Platform automatically determines whether an application is compliant
with OWASP Top 10, CWE/SANS Top 25, the assigned Veracode Level and the
assigned enterprise policy. Veracode looks for specific flaws enumerated by the CWE
list and uses standardized mappings to determine whether a flaw belongs in the most
recently published OWASP Top 10 and CWE/SANS Top 25 lists. Flaws discovered in
an application are compared to the respective standards. If even a single flaw belonging
to the standard is discovered, then the application is deemed out of compliance with
the standard. For our report, web applications are assessed against the OWASP Top 10
while non-web applications are assessed against the CWE/SANS Top 25.

Veracode Levels are Veracode’s independent standard for evaluating an application’s software quality. Veracode Levels
are assigned based on the business criticality of application. Each Veracode Level provides a predefined security policy
that aligns with different levels of risk the organization is willing to accept for applications of varying business criticality.
Figure 38 shows the five Veracode Levels aligned with the five business criticality levels as defined by the National
Institute of Standards and Technology (NIST). When an application is assigned a business criticality, the Veracode
platform automatically assigns the appropriate Veracode Level as a predefined policy and determines whether the
application is compliant with the Veracode Level. Each Veracode Level policy contains a combination of the severity
of the flaws found in the application, the types of tests being performed on the application and the application’s overall
security quality score. An application is deemed compliant when all three aspects of the Veracode Level policy are met.

Veracode State of Software Security Report: Volume 5

37

Predefined Policy Requirements for Veracode Levels

Figure 38: Predefined Policy Requirements for Veracode Levels

Predefined Policy Requirements

Business
Criticality

Veracode
Levels

Flaw Severities Not
Allowed in This Level

Required Test
Methodologies

Minimum Security
Quality Score

Very High VL5 Very High, High, Medium Static and Manual 90

High VL4 Very High, High, Medium Static 80

Medium VL3 Very High, High Static 70

Low VL2 Very High Static or Dynamic or Manual 60

Very Low VL1 Not Applicable Static or Dynamic or Manual Not Applicable

Veracode provides enterprises several options for defining custom policies, including:

• Disallowing specific flaw severities

• Disallowing specific types of flaws (specified by CWE number)

• Attaining a minimum security quality score

• Using predefined policies such as OWASP Top 10, CWE/SANS Top 25 or industry standards such as PCI

• Specifying application test methodologies and frequencies (e.g. monthly, quarterly, annually)

• Meeting timelines for remediating specified flaw severities

A custom enterprise policy may include any or all of these options. An application is deemed compliant when all
aspects of the enterprise’s custom policy are met.

Whisker Plot Definition

A whisker plot (aka box and whisker plot) is a graphic used for exploratory data analysis. Created by the great data
analyst John W. Tukey, a whisker plot can show the distribution of a dataset in one quick glance. As an example,
let us look at the whisker plot in Figure 5. The figure shows nine distribution plots of Veracode Security Quality
Score (SQS), one for the first application build scanned, one for the second application build scanned, and so on.
Each application build is indicated by the numbers on the x-axis. Looking at the first application build, we see one
whisker (the dotted vertical line) and one box (the colored shape) occurring along each whisker.

The two horizontal lines at the bottom and top of the whisker reflect the minimum and maximum SQS observed for
the first build. For the first build, the maximum score is 100 and the minimum score is 27. Looking across all nine
builds, we see that the maximum for each build is a perfect score of 100. The minimum SQS values creep up from
27, to 31, to 33 for builds 1, 2, and 3. One might expect this as build 2 represents a resubmission of build 1 with
several flaws remediated and similarly for builds 2 and 3.

Veracode State of Software Security Report: Volume 5

38

100

80

60

40V
E

R
A

C
O

D
E

S
E

C
U

R
IT

Y
Q

U
A

LI
T

Y
S

C
O

R
E

BUILD NUMBER

1 2 3 4 5 6 7 8 9

Veracode Security Quality Score by Build

Figure 5: Veracode Security Quality Score by Build

The box indicates values of the first quadrant, median, and third quadrant for all SQS values for the associated build
as we move from bottom to top of the figure. The narrow area in the middle of the box is called the “notch” which
is defined by values called notchLow, notchHi and the median. For example, the first build has a notchLow value
of 80 and a notchHi value of 81. The notch visually depicts values above and below the median that mark roughly
a 95% confidence interval. The way to interpret this is to look across multiple whiskers for non-overlapping
notches. When two whiskers have non-overlapping notches one can say with 95% confidence that the two sets
of observations have a different median. From the above figure one can conclude that improvement in the SQS
values for application builds actually does improve from build one to two to three, with 95% confidence.

Whisker plots also can visually reflect skewness in a distribution. For example, if the box area below the notch is
much greater than the box area above the notch, then the distribution is skewed low. Build eight is skewed low—
there is a wider range of SQS values in build eight below the median than above the median. There appears to be
little skew for builds one and two. Note also that the width of the box area is proportional to the number of applica-
tion builds observed. As expected, there are many more SQS observations for build 1 than for later builds.

P-Value Definition

For all of the quarterly trend graphs that are presented in this report, we also provide a p-value. In this context, the
p-value can be viewed as a metric that is derived via a linear regression model. The p-value is the probability of
observing a result at least as extreme as what we observed, given an assumption that the trend is flat.

For example, in Figure 27, we observed what appears to be a decreasing trend in percent of web application builds
with cross-site scripting flaws for six quarters. A p-value of 0.441 indicates that the probably of seeing this in our
data is over 44% when, in fact, the trend is flat—neither increasing nor decreasing. This means that we can continue
to be hopeful that the trend is down and we can continue to monitor progress, but, speaking statistically, the data
does not support any conclusion other than that the trend is flat.

Veracode State of Software Security Report: Volume 5

39

100

80

60

40

20

0

QUARTERS

2011-1 2011-2 2011-3 2011-4 2012-1 2012-2

P
E

R
C

E
N

T
A

FF
E

C
T

E
D

W
E

B
A

P
P

B
U

IL
D

S

Quarterly Trend for Cross-Site Scripting (XSS) Prevalence (Percentage of Affected Web Applications)
p-value = 0.441

Figure 27: Quarterly Trend for Cross-Site Scripting (XSS) Prevalence (Percentage of Affected Web Applications)

Generalized Linear Model

We used a generalized linear model (GLM) to evaluate the interactions between Volume, language, industry, and
supplier on the proportion of first builds that passed the CWE/SANS Top 25 compliance policy. This model leverages
the following properties of our data:

• The response variable is strictly bounded,

• The variance is non-constant, and

• The errors are non-normal.

In addition, due to the large number of industry categories (see Figure 37: Distribution of Applications by Industry)
with resulting low sample sizes in the model, we consolidated all categories other than Financial, Software, and
Government into one category named Other. In particular, the new expanded Other category includes: Media &
Entertainment, Health, Education, Business Services, Telecommunications, Technology, and Other.

The data is proportional but the GLM for interactions using the binomial distribution for errors has dispersion factors
over 1.8 for all explanatory variables so we used the quasibinomial distribution for errors. Additionally, as is customary,
we used the logit “link” function, namely the log-odds (log (p/q)) function as the transformation for raw proportional
observations. The results of the GLM for analyzing the interaction between the Volume and Supplier factors on SANS
Compliance Failure Rate for first builds (without any model simplification) are as follows:

Performing model simplification, we conclude that there is no compelling evidence that different Supplier types
influence CWE/SANS Compliance Failure Rate. For details on both the implementation of the GLM calculations
as well as interpretation of the above output, we refer you to the Handbook of Statistical Analyses Using R
(cran.r-project.org/web/packages/HSAUR/vignettes/Ch_logistic_regression_glm.pdf).

Veracode State of Software Security Report: Volume 5

40

Call:
glm (formula = y – Volume * Supplier, family = quasibinomial)

Deviance Residuals:

Coefficients:

(Intercept)
Volume SOSSv5
SupllierInternally Developed
SupplierOpen Source
SupplierOutsourced
VolumeSOSSv5:SupplierInternally Developed
VolumeSOSSv5:SupplierOpen Source
VolumeSOSSv5:SupplierOutsourced

Null deviance:
Residual deviance:
AIC:NA

1133.05488
885.25567

on 496
on 489

degree of freedom
degree of freedom

–––
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasibinomial family taken to be 2.864496721

Number of Fisher Scoring iterations: 14

Estimate
1.98176746
1.48953329
–0.04391537
1.67665279
13.58430079
–0.04479984
0.44861486

–14.22238819

Std.Error
0.19030085
0.37642676
0.23371916
0.57449701

1005.61138499
0.43773916
1.36860963

1005.61294547

t value
10.41387
3.95703
–0.18790
2.91847
0.01351
–0.10234
0.32779
–0.01414

Pr(>|t|)
< 0.000000000000000222

0.00008713
0.8510345
0.0036796
0.9892276
0.9185258
0.7432117
0.9887217

**

Min
–9.6387771

1Q
0.2108186

Median
0.3907429

3Q
0.7335999

Max
4.5222136

ABOUT VERACODE

Veracode is the only independent provider of cloud-based application intelligence and security
verification services. The Veracode platform provides the fastest, most comprehensive solution
to improve the security of internally developed, purchased or outsourced software applications
and third-party components. By combining patented static, dynamic and manual testing, extensive
eLearning capabilities, and advanced application analytics, Veracode enables scalable, policy-driven
application risk management programs that help identify and eradicate numerous vulnerabilities
by leveraging best-in-class technologies from vulnerability scanning to penetration testing and
static code analysis. Veracode delivers unbiased proof of application security to stakeholders across
the software supply chain while supporting independent audit and compliance requirements for all
applications no matter how they are deployed, via the web, mobile or in the cloud. Veracode works
with customers in more than 80 countries worldwide representing Global 2000 brands. For more
information, visit www.veracode.com, follow on Twitter: @Veracode or read the Veracode Blog.

Veracode, Inc.
65 Network Drive
Burlington, MA 01803

Tel +1.339.674.2500
Fax +1.339.674.2502

www.veracode.com

© 2013 Veracode, Inc.
All rights reserved. All other
brand names, product names,
or trademarks belong to their
respective holders.

SSSR/VOL5/US/0313

