
STATE OF
SOFTWARE

SECURITY
Focus on Application Development

SUPPLEMENT TO VOLUME 6

03 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

1VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

C
O

N
T

E
N

T
S Introduction by Chris Wysopal, CTO, CISO and Co-Founder, Veracode . . . 2

Executive Summary . 3

Application Development Landscape .4

Programming language distribution . .4

Policy compliance by programming language 5

Top 10 vulnerability categories by programming language 6

Comparison of critical vulnerability types. . 8

Security Assessment Types . 11

Remediation Analysis . 13

Developer education. 13

Type of application security analysis. 14

Appendix . 15

About the dataset . 15

Flaw density by programming language . 15

2 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Introduction
Veracode has assessed applications for security vulnerabilities on behalf

of our customers for over eight years. Our cloud-based platform has

analyzed hundreds of thousands of applications and over 1.5 trillion lines

of code. This has enabled us to amass a great deal of intelligence about

the state of software security. This intelligence allows us to diagnose

whether an organization is effectively reducing application security risk,

and to gain insight into how the process of reducing application risk

varies by organization and by development team.

When we relaunched the State of Software Security report series earlier this year, we focused on the

performance of organizations through the lens of industry verticals. This provides CISOs and application

security professionals with an important benchmark of how their application security programs are

proceeding relative to their peers.

But this perspective is only part of the story. As we answered questions from customers and others after

the release of State of Software Security Volume 6, it became clear that we could shed light on the story from

another angle, that of the differing risks inherent in applications according to the language used and the method

of their construction. The stakes are not small, and the timing is crucial. As organizations simultaneously con-

template the shift to continuous delivery and other DevOps innovations, and as they begin to feel the pressure

to break their applications apart into smaller, more sustainable units, they face what could be an ideal moment

to help their development teams make decisions to help improve the security of their enterprises.

When organizations are starting new development projects and selecting languages and methodologies,

the security team has an opportunity to anticipate the types of vulnerabilities that are likely to arise and how

best to test for them. The data in this report can inform decisions around developer training and which testing

techniques to use in order to make the inevitable remediation process less onerous. This information can make

it easier for security to work with development to increase the maturity of security in the SDLC and produce

less risky applications.

Chris Wysopal

CTO, CISO and Co-Founder

Veracode

3VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Executive Summary

1.
Applications written in web scripting languages

have a far higher prevalence rate of vulnerability

classes like SQL injection and Cross-Site Scripting

than applications written in .NET or Java. In

particular, 64 percent of applications written in

Microsoft’s Classic ASP, 62 percent of applications

written in ColdFusion, and 56 percent of applica-

tions written in PHP were observed to have at least

one SQL injection vulnerability on initial assessment,

compared to 29 percent of .NET applications and

21 percent of Java applications. This is of concern

given the large numbers of web applications written

atop PHP-based content management systems

such as WordPress and Drupal.

2.
Mobile applications had the highest rate of

cryptographic issues, at 87 percent for Android

and 80 percent for iOS. This suggests that while

mobile app developers may be aware of the need

for cryptography to protect sensitive data and thus

use it in their applications, few of them know how

to implement it correctly.

3.
Applications written in different software

languages have differing pass rates against com-

mon security policies like the OWASP Top 10. This

discrepancy is due, in part, to different vulnerability

distributions, but development teams should be

aware of the statistical risks for applications written

in a particular language when considering the threat

model for the application.

4.
eLearning has a big impact on remediation.

Lack of developer knowledge of security is often

cited as a barrier to producing more secure code.

The data shows that development organizations

that leverage eLearning see a 30 percent improve-

ment in fix rate compared to those that do not.

It is important to note that this may be correlative

rather than causative, since eLearning use is

associated with other success strategies such

as use of centralized policies, remediation coaching

and other aspects of a systematic program.

5.
The choice of assessment type can make a

difference in remediation as well. We see a 28

percent higher fix rate for vulnerabilities found by

static analysis compared to those found by dynamic

analysis. While no single assessment technology is

sufficient to secure an application, understanding

the tools’ strengths and weaknesses as it comes

to fixing — not just finding — software vulnerabilities

is important.

4 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Application Development Landscape
The application development landscape continues to change rapidly as the

technology landscape evolves. What appeared five years ago to be separate

development trends around web and mobile applications now increasingly

looks like an integrated strategy of mobile-first development, leading to the

evolution of JavaScript-heavy single page applications.

In application development practices, the ongoing debate about agile versus waterfall has turned into a discussion

of going even faster, with continuous deployment pipelines enabling organizations to push hundreds of changes

daily directly from check-in to production. And development organizations have started to pull security left into

the development process, moving away from the old model of security as a QA or deployment gate.

Against this background of changes, this report provides an overview of applications that are being developed

by Veracode customers across a wide array of industries and use cases, from large enterprises to small enterprises

to independent software vendors. This section provides some context about the composition of Veracode’s

application repository with which to interpret the findings about application security that follow.

Programming language distribution
This report covers applications written in a wide variety of programming languages, including traditional web

application development languages, compiled languages and mobile application development languages. The

language breakout omits languages with small sample sizes. The biggest changes in the language distribution

stem from an increase in .NET usage, the addition of new languages to the Veracode language support matrix,

particularly Classic ASP (Active Server Pages); the rise in popularity of Android and iOS; and the proportionate

decrease in share of portfolio of Java, PHP and C/C++.

Volume 4

Volume 5

Volume 6

0 20 40 60 80 100

Classic ASP1

.NET ColdFusionPHP

Java

Android

C/C++ iOS JavaScript (mobile)1

All Other (Ruby, COBOL, ABAP)1

Figure 1: Programming language distribution

1 Not a language supported by Veracode as of the data reported in Volumes 4 and 5 of the State of Software Security Report.

5VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Policy compliance by programming language
As discussed in Volume 6, the OWASP Top 10 is a list of the most important vulnerability categories in

web applications, compiled through community consensus by the security practitioners at the Open Web

Application Security Project (OWASP). The OWASP Top 10 is also referenced by industry standards such as

PCI-DSS, which sets forth security standards for payment card processing systems. For the purposes of this

study, we have defined a policy compliance rule that says that an application must be free of vulnerabilities

in the OWASP Top 10 (as found by static analysis, dynamic analysis or manual penetration testing) to pass

the OWASP Top 10 policy.

The pass rate for the OWASP policy can be swayed by the application type; in particular, the OWASP policy is

not appropriate for mobile or client-side applications since the policy does not reflect the threat environment

for these applications. This is important to bear in mind when considering the OWASP pass rate by industry,

since different industries may have different mixes of programming languages.

In particular, note that applications in truly compiled application languages like C/C++ and Objective C (iOS)

have a higher OWASP pass rate than general-purpose bytecode languages like Java or .NET, while scripting

languages like Classic ASP, ColdFusion and PHP have a far lower pass rate.

38%

44%

60%

62%

56%

40%

31% 69%

27% 73%

24% 76%

21% 79%

19% 81%

17% 83%

C/C++

iOS

JavaScript (mobile)

Android

.NET

Java

Classic ASP

PHP

ColdFusion

Passed OWASP Did Not Pass OWASP

0% 20% 40% 60% 80% 100%

Figure 2: Policy compliance by programming language

6 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Top 10 vulnerability categories by programming language
Next, we take a look at vulnerability prevalence by language. In this section we will talk about vulnerabilities in

the context of both CWE IDs and CWE Categories. Veracode classifies vulnerabilities according to the Common

Weakness Enumeration (CWE) maintained by MITRE, and for convenience groups related vulnerabilities into

high level categories which are discussed below. As in prior volumes of the State of Software Security, there

are significant differences in the percentage of applications affected by key vulnerabilities depending on the

language chosen. This may reflect a few important differences:

 • Design of the language

Some languages are designed from the ground up to avoid certain vulnerability classes. By removing

the need (and ability) for developers to directly allocate memory, languages such as Java and the .NET

language family avoid (almost) entirely vulnerabilities dealing with memory allocation, most notably

buffer overflows. Likewise, the default cross-site scripting behaviors of some ASP.NET controls avoid

issues endemic in other web application programming environments.

 • Operating environment

Some vulnerabilities are only relevant in certain execution environments. For instance, some categories

of information leakage are most acute in the mobile environment, which combines large volumes of

personal data with a plethora of always-on networking capabilities.

Language

CWE Category

Apps
Affected

OVERALL

Code Quality 63%

Cryptographic Issues 58%

Information Leakage 56%

CRLF Injection 49%

Directory Traversal 47%

Cross-Site Scripting (XSS) 47%

Insufficient Input Validation 37%

SQL Injection 29%

Credentials Management 25%

Time and State 23%

.NET

Information Leakage 66%

Code Quality 64%

Cryptographic Issues 61%

Directory Traversal 56%

Cross-Site Scripting (XSS) 48%

Insufficient Input Validation 46%

CRLF Injection 38%

SQL Injection 29%

Time and State 20%

Credentials Management 16%

Language

CWE Category

Apps
Affected

ANDROID

Code Quality 90%

Cryptographic Issues 87%

CRLF Injection 79%

Information Leakage 47%

Directory Traversal 33%

Time and State 28%

Authorization Issues 28%

SQL Injection 27%

Insufficient Input Validation 26%

Credentials Management 22%

CLASSIC
ASP

Cross-Site Scripting (XSS) 83%

SQL Injection 64%

Insufficient Input Validation 59%

Information Leakage 58%

Directory Traversal 47%

Session Fixation 41%

Credentials Management 29%

CRLF Injection 24%

Command or Argument
Injection

24%

Code Injection 20%

7VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Language CWE Category
Apps

Affected

C++

Error Handling 75%

Buffer Overflow 56%

Buffer Management Errors 53%

Numeric Errors 50%

Cryptographic Issues 42%

Directory Traversal 42%

Potential Backdoor 37%

Race Conditions 29%

Dangerous Functions 28%

Code Quality 27%

COLD
FUSION

Cross-Site Scripting (XSS) 87%

Information Leakage 67%

SQL Injection 62%

Directory Traversal 44%

Code Quality 43%

Time and State 42%

Command or Argument
Injection

4%

CRLF Injection 2%

Cryptographic Issues 1%

API Abuse 1%

iOS

Error Handling 84%

Cryptographic Issues 81%

Credentials Management 55%

Potential Backdoor 50%

Information Leakage 43%

Code Quality 14%

API Abuse 14%

Buffer Overflow 9%

Coding Standards 6%

Buffer Management Errors 6%

Language CWE Category
Apps

Affected

JAVA

Code Quality 80%

CRLF Injection 75%

Cryptographic Issues 58%

Information Leakage 57%

Cross-Site Scripting (XSS) 54%

Directory Traversal 48%

Insufficient Input Validation 45%

Encapsulation 35%

API Abuse 32%

Time and State 31%

SQL Injection 21%

PHP

Cross-Site Scripting (XSS) 86%

Cryptographic Issues 73%

Directory Traversal 67%

Code Injection 61%

Credentials Management 58%

SQL Injection 56%

Information Leakage 50%

Command or Argument
Injection

34%

Untrusted Initialization 30%

Code Quality 9%

Figure 3: Top vulnerability categories by programming language

8 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Comparison of critical vulnerability types
As in State of Software Security Volume 6, we now take a look at four key vulnerability categories: cryptographic

issues, SQL injection, Cross-Site Scripting and command injection. In this volume, we compare prevalence by

language to highlight differences between the languages.

It is noteworthy that web vulnerabilities like SQL injection and Cross-Site Scripting are substantially more

prevalent in applications written in web scripting languages such as Classic ASP, ColdFusion and PHP,

compared to .NET and Java applications. This is very likely due to differences in the feature sets of each

language. There are fewer security APIs built into Classic ASP, PHP and ColdFusion than have been provided

for .NET and Java. As an example, until recently it was very challenging to bind parameters in SQL queries in

PHP code, making it much harder to write code that was safe from SQL injection. ColdFusion has improved

in this regard over the years, but is still more challenging to write securely than Java or .NET.

SQL Injection

Cross-Site Scripting (XSS)

Command Injection

Cryptographic Issues

0 20 40 60 80 100

Classic ASP .NET

ColdFusion

PHP

Java Android

C/C++

iOS

Figure 4: Comparison of critical vulnerability types

9VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

One particular concern related to this data point is the high prevalence of PHP-based applications, thanks to

the widespread adoption of content management system (CMS) frameworks like WordPress, Drupal and Joomla.

According to some estimates, 74.6 million web sites use WordPress, and another few million use Drupal and

Joomla. The combination of the statistically higher prevalence of OWASP Top 10 vulnerabilities in PHP and the

wide usage of PHP-based CMSes is a recipe for some concern in the health of the wider Internet, and means that

organizations seeking to use these CMSes should carefully plan their deployments.

By contrast, a significantly larger number of mobile applications (both Android and iOS) have some type of

cryptographic issue, 87 percent and 81 percent, compared to other languages.

This data does not suggest that any language will be free of vulnerabilities, but it does show that there are

definite differences in the likelihood of running into these critical vulnerabilities. While it is unlikely that any

development team would develop new applications in Classic ASP, it does suggest a strategy for how to

prioritize assessment — or replacement — of these applications.

It is also worth investigating why there is such a high prevalence of cryptographic issues in iOS and Android

applications. Digging deeper on the types of cryptographic vulnerabilities, we find this top 10 list of

cryptographic vulnerability types:

0 10 20 30 40 50 60 70

67%

40%

11%

50%

41%

4%

3%

3%

<1%

<1%

331 Insufficient Entropy

297 Improper Validation of
Certificate with Host Mismatch

312 Cleartext Storage of
Sensitive Information

327 Use of Broken or Risky
Cryptographic Algorithm

313 Cleartext Storage
on aFile or Hard Disk

326 Inadequate
Encryption Strength

321 Use of Hard Coded
Cryptographic Key

347 Improper Verification
of Cryptographic Signature

296 Improper Following of
aCertificate’s Chain of Trust

311 Missing Encryption
ofSensitive Data

Figure 5: Prevalence of cryptographic vulnerability types by CWE (percentage of applications affected)

10 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

In this data, we see a combination of poor cryptographic practices — failure to store sensitive data properly,

using poor or known broken encryption algorithms, or failure to correctly communicate with secure services.

Unfortunately for developers of mobile enterprise applications, the storage and encryption of sensitive data

and secure communication to secure services are the essence of what is required to correctly protect user data.

What are the consequences of poor cryptographic practices in mobile applications? Looking back at the data

in State of Software Security Volume 6: Industry Vertical Analysis, we saw a disproportionately high share of

iOS and Android applications in both the technology and healthcare industries. The issue of poor cryptographic

practices in healthcare mobile applications is particularly troubling, given the rapid adoption of mobile apps in

that industry as a way for doctors to more quickly address patient care issues. A 2012 Pew study reported that

19 percent of smartphone users had downloaded a health app, and 52 percent sought health information on

their phone — and this was prior to Apple’s introduction of a unified framework for health data in 2014. A policy

brief by the Robert Wood Johnson Foundation in the journal Health Affairs predicts that health app prevalence

will rise to half the mobile device users worldwide by 2018.2

However, any personal health data in health apps bears a higher standard for security and privacy than that

in typical mobile apps, thanks to the requirements established in HIPAA in 1996. The high prevalence of crypto

vulnerabilities in these applications suggests that the market trend toward more convenient mobile access to

and storage of health information is likely to hit roadblocks in the form of data leakage from insecure mobile

apps and the services to which they connect.

2 Robert Wood Johnson Foundation brief cited in Conn, Joseph. “No longer a novelty, medical apps are increasingly valuable to clinicians and patients,”

Modern Healthcare, 2013-12-14.

11VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Security Assessment Types
One of the reasons for heightened interest in application security over

the last few years is the rise in breaches that are directly attributed to

attacks against web applications. Sometimes, as in the Target breach,3 the

exploitation of a web application vulnerability happens only after the user

has authenticated using stolen credentials (which, themselves, are often

stolen in earlier breaches using simple SQL injection). But often the first

step is finding an easily exploitable vulnerability in a web application via

a simple “black box” scanner.

We wanted to understand the difference between vulnerability types found in web applications at runtime via

“black box” assessments (or dynamic application security testing, also known as DAST), and those found via

an inside-out assessment of the application using “white box” assessments, also known as static application

security testing or SAST.

Vulnerability Category Dynamic Static

Code Quality n/a 63%

Cryptographic Issues 53% 58%

Information Leakage 80% 56%

CRLF Injection n/a 49%

Deployment Configuration 55% n/a

Server Configuration 16% n/a

Cross-Site Scripting (XSS) 27% 47%

SQL Injection 6% 29%

Credentials Management 12% 25%

Code Injection 1% 2%

Time and State n/a 23%

Directory Traversal 2% 47%

Insufficient Input Validation 4% 37%

Figure 6: Dynamic vs. static application security testing

3 Olavsrud, Thor. “11 Steps Attackers Took to Crack Target.” CIO Magazine, September 2, 2014. www.cio.com/article/2600345/security0/11-steps-attackers-

took-to-crack-target.html

http://www.cio.com/article/2600345/security0/11-steps-attackers-took-to-crack-target.html
http://www.cio.com/article/2600345/security0/11-steps-attackers-took-to-crack-target.html

12 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

As noted, there are several vulnerability categories that are uniquely found by each approach. Those

uniquely found by DAST, deployment configuration and server configuration, include issues that are outside

the application code context but comprise part of the operating runtime of the application, including miscon-

figurations that may cause private web application resources (such as configuration files) to leak, or that may

allow downgrading to a less secure protected channel. Those uniquely found by SAST tend to be categories

that are challenging to observe via black box assessments, such as CRLF attacks (log or header forging), code

quality issues (including leftover debug code, use after free/double free, use of unsafe native code invocation

and other vulnerability types), and time and state errors (issues with temporary file, concurrency issues and

incorrect ownership assignment).

It is tempting to look at the higher reported prevalence of SQL injection and Cross-Site Scripting via SAST and

draw conclusions about false positive rates. The reality is that the two assessment techniques are fundamentally

different and will naturally show different prevalence. DAST relies on the ability to successfully crawl and discover

the attack surface of an application, and therefore requires more time to achieve high levels of code coverage.

We observe, however, that there is frequently pressure to shorten the time window for dynamic assessments,

based on testing windows or operational concerns. It is also challenging for DAST to fully exercise workflows

and business logic that are not easily automated, for instance, a sequence of forms that must be completed in

a certain order with certain values to access business functionality. Therefore, the reported prevalence of these

categories by DAST may understate the real situation. By the same token, SAST may report findings in these

categories that are not practically exploitable without compromising other trusted resources. such as file

systems or databases.

As has been shown many times in the industry, each of the assessment technologies available has different

strengths. A mature program will typically recognize the strengths and weaknesses of each technique and use

them at the appropriate times in the lifecycle. For instance, Gartner’s Ramon Krikken and Ben Tomhave have

suggested that organizations plan to use DAST at system test, prerelease testing, and in production, while

bringing SAST further back the SDLC, beginning in prerelease testing but also in automated continuous

integration driven testing and from the developer’s desktop.4

4 Gartner (Ramon Krikken and Ben Tomhave), “How to perform application security testing for web and mobile applications.” January 30, 2015.

13VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Remediation Analysis
In State of Software Security Volume 6, we looked at remediation rates by

industry and evaluated a factor that may contribute to improved remediation

rates: use of remediation coaching. This report continues to evaluate other

factors that may contribute to improved remediation rates, including formal

developer education and type of security analysis performed.

Developer education
One of the holy grails of application security programs is to reduce the rate of introduction of security vulner-

abilities. One way that industry attempts to help with this is through formal developer education. The PCI-DSS

standard goes so far as to mandate developer education in secure coding practices in support of this goal.

Many application security providers offer a developer education capability as part of their offerings, either

via in-house developed content or through a partnership with a learning content provider. This section of the

report looks at differences in remediation practice for Veracode customers who have established an eLearning

program, versus those who have not.

Note: It is challenging to obtain precise measurements of the effectiveness of developer education. To many

a CISO’s chagrin, it is difficult to measure prevention — that is, to determine which vulnerabilities might have

been introduced but were not because a developer learned secure coding practices. In many cases, the best an

application security program can do is to measure fixes made to code that existed before the program began.

It can also be difficult to correlate the training experience of individual developers with fix rates in software,

given that many developers may be responsible for a given application. The best we can hope for is some

correlation in use of eLearning with improved fix rates.

When we look at the overall fix rate of Veracode customers who have established an eLearning program,

we note that the fix rate is considerably higher, with 75 percent of vulnerabilities fixed versus 58 percent, an

improvement of 30 percent over the baseline rate. This suggests that eLearning is correlated with a higher fix

rate. We must caution, however, that there may be other factors at play here, such as the existence of a formal

application security program, effective use of application security policy or use of remediation coaching.

No eLearning Subscription

eLearning Subscription

0 10 20 30 40 50 60 70 80

58%

75%

Figure 7: Percent vulnerabilities found vs. fixed

14 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Type of application security analysis
An axiom of application security assessment is that it’s best to conduct static assessments where possible,

because it gives developers more actionable results (line of code location of the vulnerability, data flow

information and so on). In this volume of the report, we looked at our data to see if there was evidence

that supports this hypothesis.

To examine this hypothesis, we looked at the rate of fix, which is computed as the total number of vulnerabilities

fixed divided by the total number of vulnerabilities found. Rate of fix has the advantage of applying to any

assessment type, unlike a quality measure like flaw density, which is only applicable for static assessments.

We compute this measure for each assessment type.

We found the following fix rates in reassessment:

The hypothesis seems to be confirmed by the comparison of the fix rate. Developers on average fix 64 percent

of static vulnerabilities, compared to 50 percent of dynamic vulnerabilities — on average, 28 percent better.

There are several possible reasons why static analysis observed a higher fix rate. The most likely is that static

provides higher fidelity data about the root cause of a vulnerability, including source file and line number.

But there are other possibilities, including the likelihood that a static assessment is being run on an application

that is actively under development and that engineering therefore already sees fixing issues as a priority, where

dynamic assessments may be run on a production system where the development team may not be actively

engaged. We tried to control for this effect by only looking at applications that were rescanned, indicating

some need to verify changes by the development team.

This is not to say that a security program should rely exclusively on static analysis. Some vulnerability classes can

only be caught at runtime, using a technique like DAST, behavioral mobile app testing or interactive application

self-testing. Some, like business logic vulnerabilities, require a skilled human tester. Some applications may not

lend themselves to static assessment at all, due to lack of programming language support or the inability to

obtain binaries (when the application is deployed) or source code. This data does suggest, though, that static

assessment is worthwhile when possible, even when other methods have been employed, and the hypothesis

that static results may be more actionable seems to be borne out.

DynamicDS

Static

Manual

0 10 20 30 40 50 60 70 80

64%

50%

52%

Figure 8: Percent vulnerabilities found vs. fixed

15VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Appendix
About the dataset
The data represents 208,670 application assessments submitted for analysis during the 18-month period

from October 1, 2013 through March 31, 2015 by large and small companies, commercial software suppliers,

open source projects and software outsourcers. In most analyses, an application was counted only once, even

if it was submitted multiple times as vulnerabilities were remediated and new versions uploaded. The report

contains findings about applications that were subjected to static analysis, dynamic analysis or manual

penetration testing through Veracode’s cloud-based platform. The report considers data that was provided

by Veracode’s customers (application portfolio information such as assurance level, industry, application origin)

and information that was calculated or derived in the course of Veracode’s analysis (application size, application

compiler and platform, types of vulnerabilities, Veracode Level (predefined security policies which are based

on the NIST definitions of assurance levels)).

Flaw density by programming language
State of Software Security Volume 6 included data about average flaw density (the number of flaws, or vulner-

abilities, per megabyte of executable code) as a way to measure remediation activity. We provide the following

table of average flaw density by language for reference

Note: It is important to not draw too many conclusions from flaw density differences, as flaw density is affected

by many factors. Language-specific differences in flaw density may be caused by the richness of the system

APIs for a scripting language, which instruction sets are enabled in the compiler, 32-bit code versus 64-bit code

(64-bit executables are much larger than 32-bit ones with the exact same source files), etc. Some of the same

challenges apply to other measures of defect density, such as defects per KLOC (thousand lines of code).

Language Flaw Density per MB Flaw Density per MB (High/Very High)

Classic ASP 1,686.60 1,112.80

ColdFusion 262.80 227.30

PHP 184.00 47.70

Java 51.80 5.20

.NET 32.50 9.70

C++ 26.70 8.80

iOS 23.40 0.90

Android 11.30 0.40

JavaScript (mobile) 8.10 0.09

Figure 9: Flaw density by programming language

16 VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

SAMPLE SIZE

In any study of this size, there is a risk that sampling issues will arise because of the nature of the way

the data was collected. For instance, all the applications in this study came from organizations that were

motivated enough about application security to engage Veracode for an independent assessment of software

risk. We have taken care to only present comparisons where a statistically significant sample size was present.

ABOUT THE FINDINGS

Unless otherwise stated, all comparisons are made on the basis of the count of unique application builds

submitted and rated.

17VERACODE State of Software Security Report, Supplement to Volume 6: Focus on Application Development

Veracode’s cloud-based service and systematic

approach deliver a simpler and more scalable

solution for reducing global application-layer risk

across web, mobile and third-party applications.

Recognized as a Gartner Magic Quadrant Leader

since 2010, Veracode secures hundreds of the

world’s largest global enterprises, including

3 of the top 4 banks in the Fortune 100 and

20+ of Forbes’ 100 Most Valuable Brands.

LEARN MORE AT WWW.VERACODE.COM,

ON THE VERACODE BLOG, AND ON TWITTER.

