
Practical DevSecOps :
Reduce Risk and Go to Market Faster

1

Table of Contents
03 Introduction

04 DevSecOops - A Cautionary Tale

06 What is DevSecOps?

07 Practical Steps for Adopting DevSecOps

12 Conclusion

 07 Establish a Common Vernacular

 07 Integrate Security Early and Often

 11 Automate Security with a Developer-Centric Approach

2

Introduction
Implementation of a DevSecOps approach is the
most impactful key factor in the total cost of a data
breach, according to IBM. This eBook will explore
what successful DevSecOps looks like and how it
can be implemented in practice. By the end, you’ll
know how and why to build a modern software
development workflow around security from the
get-go.

3

https://www.ibm.com/reports/data-breach

DevSecOops – A Cautionary Tale
Before we dig into the elements of a successful DevSecOps

implementation, let’s cover an example of what happens when

the “Sec” is missing from DevOps – or is siloed and left to the

end of the software development lifecycle (SDLC).

The following is a fictional story, though it relays the all-too-

real story of many companies you’ve heard of, buy from, or

maybe even show up to work for every day.

Fail Fast Technologies was a company like any other attempting

to develop modern software at a rapidly increasing rate using

agile processes and trying to move to DevOps.

However, they had a problem with security flaws in their

applications. The development team was focused on meeting

deadlines and didn’t prioritize secure coding or thorough

code testing. They only performed basic scans on critical

applications before adding them to the main repository. As a

result, their technical debt kept growing, and by the five-year

mark, 70% of their applications had security flaws, because like

most companies, their average application footprint grew by

about 40% per year.

Due to limited resources, there was only one person

responsible for security coordination between the

development and security teams. This person would manually

create JIRA tickets for each developer after routine security

tests. However, this process took a lot of time, causing delays

in fixing vulnerabilities. The security team struggled to keep up

with the pace of development, and the liaison often wondered

why these issues weren’t caught earlier. Although there

were suggestions to organize workshops for developers to

code more securely, there was never enough time to make it

happen.

The security team was overwhelmed with testing new

applications and patching urgent vulnerabilities that made

the news before Fail Fast even knew about them. The liaison

knew they needed to take a comprehensive look at the entire

application ecosystem, but there was just never enough time.

Then, one day, the liaison had to deliver devastating news

to the CISO. A malicious actor had exploited a SQL injection

vulnerability, resulting in a significant breach. Millions of

customer records containing highly sensitive personal

information had been stolen.

It was an ordinary day until the CISO received that call...

4

https://info.veracode.com/soss-2023-ungated.html
https://info.veracode.com/soss-2023-ungated.html

What Went Wrong?

As the Fail Fast teams investigated the breach and tried to find

the main cause, they discovered that the vulnerability could have

been identified during the application’s development through a

Static Analysis scan. However, the scan was skipped because the

development team was under pressure to release the app quickly

before an analyst review deadline. The vulnerability could have

also been found through a Dynamic Analysis scan after the app

was launched, but since the app was older and not as important

to the company’s operations, the security team didn’t prioritize it

for scanning.

They realized that they didn’t have a consistent way of examining

and prioritizing the results of scans. Sometimes, developers

would ignore issues if they seemed unimportant or if fixing them

would delay the release of new features. To compound the issue

of ignoring flaws, there was the development team’s use of AI

to assist with code creation. While it helped developers release

code faster, it also introduced more flaws more quickly.

The developers needed to be able to perform critical scans

efficiently and handle security issues on their own, instead of

relying heavily on the security team. This required integrating

security processes, tools, and methods into their current

workflow. The security team and operations team needed to

trust that the developers were taking all necessary precautions to

prevent introducing new flaws into the code. They also needed a

way to assess the risk to their systems in an ongoing manner.

Upon closer examination, they realized that some manual

processes, like assigning tickets for fixing vulnerabilities,

were slowing down the remediation process. However, they

understood that these were just symptoms of a larger problem.

While adding some automation could help, the root cause was

the inconsistent collaboration between security, development,

and operations. They considered using AI-assisted remediation

tools, but they needed to make sure they could trust the fixes

and know it was not just brushing things under the rug to check

a box.

Security needed to be integrated into every stage of Fail Fast’s

software development process. The teams understood that

simply using various security tools wouldn’t solve the problem

or change the company’s culture. It was challenging to onboard

and integrate multiple tools, and they needed a better way to

implement security policies, track progress in reducing technical

debt, and address new flaws in the code. They needed a common

language and a unified approach to viewing their security status

as a team. The Fail Fast team needed a DevSecOps makeover.

5

https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/dynamic-analysis-dast

What is DevSecOps?

The cornerstone of a successful DevOps practice is automation; this is why adopting DevSecOps (security automated within workflows) makes so much sense. DevSecOps is

surrounding each step of the DevOps process and practice with security. By adding security into each step of the SDLC from coding and building to operating and monitoring

compliance to policy – code bases, applications, and APIs are designed, built, and deployed with security in mind. Integrating security into each DevOps function effectively

creates DevSecOps – an overarching layer covering all activity along the SDLC.

The thing is, successfully implementing DevSecOps is one of the most difficult problems to solve due to a variety of factors. Cultural adoption is one of the biggest blockers to

shifting left and optimizing the “right” shifted evaluation and testing of the attack surface. Now we will return to our story of Fail Fast Technologies and see what steps they took to

successfully incorporate security into DevOps to create DevSecOps.

6

Practical Steps for Adopting
DevSecOps
While Fail Fast was already implementing DevOps, they needed

to holistically automate security in their process to successfully

adopt DevSecOps and avoid running into another crisis like the

SQL injection.

The Fail Fast team started by making sure everyone understood

the same definitions of terms. This helped prevent confusion and

made it easier for team members to know what they needed to

do before moving their code to the next stage of development. By integrating security testing early and often, the Fail Fast team

was able to identify and address potential vulnerabilities and

flaws in a timely manner.

Based on data from the State of Software Security 2024,

roughly 63% of applications have flaws in first-party code and

70% contain flaws in third-party code. That’s why testing both

throughout the SDLC is so critical.

In addition to scanning early and often, the team began with an

iterative approach to threat modeling before any code was even

written. This creates guidelines and stops problems before they

ever start.

CWE stands for Common Weakness Enumeration. It’s a list of

common weaknesses in software and hardware that have security

problems. There are thousands of weaknesses, but the most well-

known ones are the SANS Top 25 and the OWASP Top 10. These

weaknesses give teams a common language to talk about security

problems and help them know what to prioritize and fix. CVE

stands for Common Vulnerabilities and Exposure. It’s a way to

talk about specific security issues. Each CVE has a unique number

and is scored for severity. CVEs can only be issued by a certified

authority and are real vulnerabilities.

A security flaw is an issue in how something is implemented

that can lead to a vulnerability. A vulnerability is a weakness in

the code that can be exploited by a bad actor. Not all flaws are

vulnerabilities, but all vulnerabilities are flaws. Any changes to an

application can expose it to attacks.Establish a Common Vernacular

Integrate Security Testing Early
and Often

CWE vs CVE

Security Flaw vs Vulnerability

7

https://www.veracode.com/resources/state-software-security-2024-addressing-threat-security-debt
https://owasp.org/www-community/Threat_Modeling
https://cwe.mitre.org/
https://www.sans.org/top25-software-errors/
https://owasp.org/www-project-top-ten/
https://cve.mitre.org/

Types of Testing

Static Application
Security Testing (SAST):

Software Composition
Analysis (SCA):

Dynamic Application
 Security Testing (DAST):

Scanning source or binary code in
a-pre-production or “static” state to

find security flaws or CWEs. Also
called “white box” testing.

Analyzing the open-source libraries
and third-party components in

an application for CVEs. Used in
the creation of Software Bill of

Materials (SBOM) that supports
one or both standard formats:

CycloneDX and SPDX.

Simulating attacks in a production,
runtime, or “dynamic” state to

expose configuration and end-point
weaknesses also known as “black

box” testing. Note: SAST finds
security flaws while DAST finds

vulnerabilities.

88

Benefits of Scanning Early:

Early Identification of Vulnerabilities:

Enhanced Security Awareness:

Cost and Time Savings:

Improved Code Quality:

By scanning for security vulnerabilities early in the SDLC with

SAST and SCA, you can identify and address potential security

flaws at an early stage. This allows for prompt remediation,

reducing the risk of these vulnerabilities being exploited later in

production. Using a trusted AI tool to aid the remediation cuts

down significantly on time spent remediating.

Early scanning raises security awareness among developers and

the development team as a whole. It helps them understand the

importance of security and encourages them to prioritize security

considerations throughout the development process. This

increased awareness fosters a security-conscious culture within

the organization.

Addressing security vulnerabilities early in the development

process is more cost-effective and time-efficient compared

to fixing them later. Early identification and remediation of

vulnerabilities help prevent the accumulation of technical debt

and reduce the need for extensive rework or redesign.

Scanning early enables developers to receive fast feedback

on potential security issues in their code. This feedback loop

promotes better coding practices and encourages developers to

write more secure code from the start. As a result, the overall

code quality improves, leading to more robust and secure

applications. Promoting the use of hands-on, interactive training

tools that use real code to understand the potential risk being

introduced helps developers eliminate a flaw before the first line

of code is even committed.

9

https://www.veracode.com/products/security-labs
https://www.veracode.com/products/security-labs

Benefits of Scanning Often:

Continuous Risk Assessment:

Rapid Vulnerability Remediation:

Compliance and Regulatory Requirements:

Continuous Improvement:

Regular security scanning allows organizations to continuously

assess the risk posture of their applications. By scanning often,

they can identify new vulnerabilities that may arise due to

changes in the codebase, third-party libraries, or emerging

threats. This proactive approach helps organizations stay ahead of

potential security risks.

Regular scanning enables organizations to quickly identify

and remediate newly discovered vulnerabilities. By addressing

vulnerabilities promptly, organizations can minimize the window

of opportunity for attackers and reduce the potential impact of

security breaches.

Many industries have specific compliance and regulatory

requirements related to security. Regular scanning helps

organizations meet these requirements by ensuring that

their applications adhere to the necessary security standards.

It provides evidence of ongoing security efforts and helps

organizations demonstrate compliance during audits.

Scanning often allows organizations to gather valuable data and

insights about their application’s security posture over time. By

analyzing trends and patterns in the scan results, organizations

can identify areas for improvement, track progress, and refine

their security practices. This continuous improvement cycle helps

organizations strengthen their overall security posture.

Veracode was really easy to use, and developers were able to go in and scan early
and often. In the first eight months, we had 18,000 flaws fixed. It was just
phenomenal.

- Nikki Veit, Director of Application Development for the State of Missouri

10

https://www.veracode.com/customers/state-of-missouri

Automate Security with a Developer-Centric Approach

When Fail Fast automated the steps above, they knew they had the recipe for DevSecOps nirvana. Automation plays a

vital role in DevSecOps, and it is important to adopt a developer-centric approach to security automation. This means

providing developers with the necessary tools, resources, and training to automate security processes seamlessly within

their existing workflows.

Fail Fast asked themselves, “What will make security easier for developers? What makes it easy for them to have a

high-quality, secure application?” The answer was clear: the integration and automation of security should grow out of

development processes – out of the developer tool chain and workflow.

By integrating security tools and practices into the development environment, IDE, and source code managers (SCMs),

like GitHub, developers can easily perform security scans, receive real-time feedback, and remediate vulnerabilities

efficiently. This developer-centric approach empowers developers to take ownership of security and enables them to

proactively address security concerns throughout the development process.

The automation of remediation is a critical piece. Development teams that fix flaws the fastest are 4x less likely to let

critical security debt materialize in their applications.

Veracode’s AI-driven remediation tool, Veracode Fix, can address many CWE categories with severity ratings ranging

from medium to very high. This innovative approach, leveraging a highly curated set of reference patches from our

security research team, enables organizations to proactively reduce security debt and strengthen their software security

posture.

Continuous scanning must be accompanied by continuous remediation to be effective.

11

https://www.veracode.com/blog/customer-news/announcing-veracode-scan-unified-sast-and-sca-ide-plugin
https://community.veracode.com/s/spotlight/veracode-s-github-repository-scanning-app-is-now-available-MCVS3RMCXI4NAVJESQOL4L5I47TI
https://www.veracode.com/resources/state-software-security-2024-addressing-threat-security-debt
https://www.veracode.com/resources/state-software-security-2024-addressing-threat-security-debt
https://www.veracode.com/fix

Conclusion
DevSecOps is not a destination; it is a journey. It is not a state to achieve, but a continuous process to

implement and uphold. The key is to integrate and re-integrate security seamlessly, adapting to evolving

development needs and changing tooling. By staying pervasive without being invasive, organizations

can ensure a secure and efficient development environment. Remember, DevSecOps is an ongoing

commitment to maintaining a strong security posture while enabling agile and innovative software

development practices.

Veracode’s world-class platform enables you to establish continuous security around your legacy and

cloud-native applications. We support you in seamlessly integrating and automating security into

your entire SDLC, bringing security and development together, and providing a vehicle to define and

implement a set of security policies that align to the business criticality and operating environment of

software in production. With Veracode solutions, support, and services, you can avoid and overcome

the challenges of securing your software from start to finish.

Click here to schedule a demo of Veracode today and let us show you how easy we can make

DevSecOps for your organization.

12

https://info.veracode.com/veracode-solution-demo.html

