
1D E V S E C O P S P L AY B O O K | V E R A C O D E

The DevSecOps
Playbook

Practical Steps for
Producing Secure Software

2D E V S E C O P S P L AY B O O K | V E R A C O D E

Table of Contents

03 Introduction

04 DevSecOops – A Cautionary Tale

 05 What Went Wrong?

06 The Role of Security in Modern Software Development

 06 What is DevOps?

 08 What is DevSecOps?

	 08	 The	Benefits	of	DevSecOps	

09 Practical Steps for Adopting DevSecOps

 09 Establish a Common Vernacular

 11 Embed Security into the Software Development Lifecycle

19 Conclusion

3D E V S E C O P S P L AY B O O K | V E R A C O D E

Introduction

The traditional approach to software development (with

security at the end) simply can’t keep up with the speed of

DevOps and modern software development. Research in the

State of Software Security v12 shows there has been a 20x

increase in median scan cadence: from users averaging two

or three scans per year in 2010 to 90 percent of applications

being scanned at least once per week in 2021.

Continuous testing and integration, which includes security

scanning in pipelines, is becoming the norm as a part of

modern software development methodologies; that’s where

the DevSecOps philosophy enters the picture.

In this eBook, we’ll first look at why incorporating security

into DevOps to create DevSecOps is critical, and then we’ll

dive into what successful DevSecOps looks like and how

it works in practice. By the end, you’ll know how and why

to build a modern software development workflow around

security from the get-go.

2010

2021

20x
increase in
median scan
cadence from
2010 to 2021

https://info.veracode.com/soss-v12-ungated.html?aliId=eyJpIjoiOTlXMGxGS0wzTkU5M1hZciIsInQiOiJ0Wk5ZVTM4R0lTdVRodjY0RVdvbFFBPT0ifQ%253D%253D

D E V S E C O P S P L AY B O O K | V E R A C O D E

Before we dig into the elements of a successful DevSecOps

implementation and what that might look like, let’s cover an

example of what happens when the “Sec” is missing from DevOps

or is siloed and left to the end of the SDLC. The following is a

fictional story, though it relays the all-too-real story of many

companies you’ve heard of, buy from, or maybe even show up to

work for every day.

Fail Fast Technologies was a company like any other attempting

to develop modern software at a rapidly increasing rate using

agile and DevOps processes.

Fail Fast had many applications to track and security flaws of

varying degrees of severity in most of their applications. With

a lean development team and aggressive delivery targets,

developers weren’t prioritizing secure coding or rigorous code

testing in their environments. They performed basic SAST scans

on applications on the critical path before adding their code

to the larger repository. They were doing their best to prevent

adding net new tech debt, but since the average application

grows at about forty percent per year for the first five years

regardless of its original and by the five-year mark 70 percent of

applications contain at least one security flaw, they just continued

watching that debt pile up.

Due to budget constraints, there was only one person functioning

as the liaison between the security and development teams.

New applications and APIs went through routine security

tests at the end of each development cycle, vulnerabilities

were triaged, and JIRA tickets were manually created by this

SecOps practitioner for each developer – a task that took at

least half a day. Developers generally had to delay prioritization

of defects because vulnerability findings weren’t in sync with

their current sprint plan, and the lack of prioritization meant

the slowing remediation of security flaws. Even so, the security

effort struggled to keep pace with development. The SecOps

practitioner routinely asked, “Why don’t they catch this stuff

earlier,” and “How did they not see this?” It had been suggested

that the SecOps practitioner lead a workshop to help the

developers code more securely, but it never got organized.

There just wasn’t enough time. “Security” could barely test the

new applications coming through and juggle patching urgent

vulnerabilities that seemed to make the news before Fail Fast

was aware of them. Even though the Fail Fast SecOps practitioner

knew he needed to take a more comprehensive look at the entire

application ecosystem and what needed an update, rework, or

patch, he could only prioritize the applications that were on fire.

Then one day, the security team liaison had to make the call

that anyone in his position would dread. He had to call the CISO

and inform him that a bad actor had found a way to leverage

a SQL injection vulnerability and cause a substantial breach –

millions of records containing very sensitive personal identifying

information of their customers had been stolen.

It was a regular day like any other until the CISO got that call...

D E V S E C O P S P L AY B O O K | V E R A C O D E

DevSecOops – A Cautionary Tale

4

https://info.veracode.com/soss-2023-ungated.html
https://info.veracode.com/soss-2023-ungated.html

D E V S E C O P S P L AY B O O K | V E R A C O D E 5

What Went Wrong?

As they began to dig into the breach details and try to get to the root cause, the Fail Fast teams realized the

vulnerability could have been surfaced through a static scan when the application was developed, but that scan

wasn’t run because the development team was under pressure to ship the app as quickly as possible to beat an

analyst review deadline. The vulnerability could have also surfaced with a dynamic scan post-production, but because

the application was now older and not as critical to the value chain, the security team had not prioritized it as a

dynamic scan candidate.

They realized they didn’t really have a standard for examining and prioritizing the results of scans. Often developers

will try to ignore issues if those issues conflict with their ambition to release new functionality. Developers needed

to be able to efficiently perform critical scans and handle security issues more self-sufficiently instead of relying so

heavily on the security team. To do this they needed the process, tools, and methods that would integrate into their

current workflow. The SecOps practitioner and the Ops team needed to feel confident that developers were taking

every precaution not to introduce new flaws into the code base. They also needed a way to evaluate the risk on their

attack surface and prioritize dynamic scanning, penetration testing, and critical patch candidates.

A deeper examination points out that some of the manual processes, like assigning remediation tickets really slowed

down the interaction and remediation activity. However, these were just symptoms of a larger problem. Adding

sporadic automation could help, but the root cause was inconsistent utilization of security to development and

operations. Security needed to be integrated into Fail Fast’s software development lifecycle across the board. The

teams realized that throwing a bunch of disparate tools at the problem could potentially overcomplicate things,

because tools alone do not magically solve the problem or change culture. With so many different security tools

to choose from, attempting to onboard and integrate them was difficult. They needed a better way to implement

policy, track progress against tech debt, and burn down any new flaws introduced into the code base. They needed

a common language and a unified way of viewing their security posture as a team. The Fail Fast team needed a

DevSecOps makeover.

D E V S E C O P S P L AY B O O K | V E R A C O D E

6D E V S E C O P S P L AY B O O K | V E R A C O D E

The Role of Security in Modern
Software Development

In order to discuss how the Fail Fast team achieves successful DevSecOps, let’s

examine the role of security in modern software development methods. Many

companies, like our fictional Fail Fast Technologies, are currently developing

modern software using DevOps processes or looking to adopt it, so let’s get clear

on what DevOps is.

What is DevOps?

DevOps is a culture; it’s a way of viewing the software

development lifecycle like an ongoing conversation between

teams. DevOps only works if teams can break down silos and

collaborate – while still maintaining the integrity of their

specific function.

DevOps is a philosophy that uses a set of combined practices to integrate

software development and IT operations. DevOps complements agile software

development by fostering a continuous feedback loop and chunking up work

and the associated risk. One of the best aspects of DevOps is that you typically

automate the entire building of environments from the ground up. You build the

application, you build the host it will sit on, and you deploy it consistently to the

host.

Now, let’s investigate the specific functions that allow for automation. The

integrated nature of DevOps is best viewed as a continuous loop. Every activity

within the loop maps to a corresponding principle. Each step or fundamental

function blends into the others drawing in practitioners across teams, from

coding and testing to release and deployment, and finally to operating and

monitoring, with the cycle repeating infinitely.

6D E V S E C O P S P L AY B O O K | V E R A C O D E

Code

Development Operations

Plan

Build Operate

Deploy

Release

MonitorTest

Real - Time Communication

Starting at the top left of the DevOps

loop is Continuous Integration as

a part of the “Code” and partially

the “Build” function. Here we are

taking the minimally complex pieces

of the system and making sure they

all still build and pass other tests

to ensure the entire collection

functions to specification. Many

developers may be writing code for

different applications or APIs in the

same system, and all that code must

“integrate” preserving the basic

integrity of the entire collection of

components. If any component fails a

test, we know that the system is likely

to fail, and we should not deploy it.

Continuous Deployment (sometimes

called Continuous Delivery) takes the

output of the Continuous Integration

step and gives it a place to live (these

two steps are often grouped and

referred to as CI/CD). This step

deploys consistent environments

which provide a live execution

environment for the functional

system. The environment can be

referenced as the code that was

written to deploy it and debugged as

a system.

This step of the DevOps practice

involves testing code to determine

how it will behave in a production

environment. Here tests can be

measured against a set of objective

metrics determined ahead of time

by all teams involved in the DevOps

effort. Those metrics qualify that the

application is ready for end users.

Load testing, functional testing,

regression testing, and security

testing are all examples of tests that

validate an application as ready for

production. This is the last place to

address issues with performance or

security.

The activities associated with

Monitoring are generally led by

the “Ops” side of the DevOps

collaborative. Network, systems,

applications, threats to any part of

an organization’s attack surface, and

vulnerabilities that surface over time

are monitored across applications

and APIs in production. Monitoring

is meant to provide feedback that

can be actionable and result in

development prioritization of said

feedback – integrating the feedback

brings us from the right side of

the loop into planning, coding, and

building.

Simplified	Fundamentals	of	DevOps

Continuous Integration Continuous Deployment Continuous Testing/Validation Continuous Monitoring

7D E V S E C O P S P L AY B O O K | V E R A C O D E

88

What is DevSecOps?

The cornerstone of a successful DevOps practice is

automation; this is why adopting DevSecOps (security

automated within workflows) makes so much sense.

DevSecOps is surrounding each step of the DevOps

process and practice with security. By adding security

into each step of the software development lifecycle

(SDLC) from coding and building to operating and

monitoring compliance to policy – code bases,

applications and APIs are designed, built, and deployed

with security in mind. Integrating security into each

DevOps function effectively creates DevSecOps – an

overarching layer covering all activity along the SDLC.

The Benefits of DevSecOps

The benefits of DevSecOps include overlaying security

at each step, so it does not become a siloed afterthought

and just that last “hurdle” to overcome before an

application gets deployed. Practically speaking, this

means actively applying security at every step in the

SDLC – teaching developers to spot code flaws early,

helping developers choose third-party libraries that do

not introduce vulnerabilities, defining the meaning of

“done,” and continuing to shift right as well as left when

monitoring attack surfaces.

Why integrate security testing so tightly into the

DevOps process? It allows teams to catch potential

attack targets early where they are far less costly

and exhausting to fix. For example, research1 shows

that users of hands-on developer security training

who had completed at least one lesson took 110 days

to remediate 50% of flaws – while those who had no

such training took 170 days. That’s a difference of two

months!

The thing is, successfully implementing DevSecOps

is one of the most difficult problems to solve due to a

variety of factors. Cultural adoption is one of the biggest

blockers to shifting left and optimizing the “right”

shifted evaluation and testing of the attack surface.

Now we will return to our story of Fail Fast Technologies

and see what steps they took to successfully incorporate

security into DevOps to create DevSecOps.

D E V S E C O P S P L AY B O O K | V E R A C O D E

1 info.veracode.com/soss-v12-ungated

https://info.veracode.com/soss-v12-ungated.html?aliId=eyJpIjoiOTlXMGxGS0wzTkU5M1hZciIsInQiOiJ0Wk5ZVTM4R0lTdVRodjY0RVdvbFFBPT0ifQ%253D%253D
https://www.veracode.com/products/security-labs

9D E V S E C O P S P L AY B O O K | V E R A C O D E

While Fail Fast was already implementing DevOps, they needed to holistically

automate security in their process to successfully adopt DevSecOps and avoid

running into another crisis like the SQL injection.

Establish a Common Vernacular

The Fail Fast team started by establishing a common vernacular: agreeing

on definitions of terms to mean the same to everyone on both teams. This

eliminated confusion and helped each team member better understand what

their requirements were before they moved their code to another part of the

software development lifecycle.

CWE vs CVE

Even though the teams had heard these terms before, a few of them were not

100% clear on what they meant and in some cases were conflating them. It was

important for the teams to understand the difference because it would help set

them up for success by knowing how to treat each one differently within the

context of their applications.

CWE. “Common Weakness Enumeration (CWE™) is a community-developed

list of common software and hardware weakness types that have security

ramifications,” states their website. Not only do these weaknesses apply to

software, but they also apply to design and architecture. There are thousands of

CWEs, but the most recognizable compilations of security flaws are the SANS

top 25, which represents the most common 25 CWEs that specifically affect

software. There is also the Open Worldwide Application Security Project®

(OWASP) Top 10 which applies more directly to web applications. An example of

a CWE is CWE 89, or SQL injection, which can lead to direct access/manipulation

of the underlying SQL database that was not intended through the original

application’s designed purpose – a weakness with which the Fail Fast team

unfortunately was all too familiar. CWEs give teams a common language around

security flaws and what those flaws are to help them prioritize where developers

need more training and guidance as well as what to fix.

CVE. CVE stands for Common Vulnerabilities and Exposure. Much like CWEs,

CVEs are organized in a way that allows teams to speak the same language

around exploit capabilities or potential exploit capabilities. The CVE numbering

system started back in 1999 with the National Institute of Standards and

Technology’s (NIST) effort to maintain a database of publicly disclosed security

issues. AppSec vendors like Veracode began building their own proprietary

databases to augment the NIST database. A CVE is an ID number that begins

with the year the vulnerability was discovered followed by a series of numbers

that uniquely identify it. CVEs are then scored low to high (0-10) for severity.

A CVE indicates a specific issue associated with a particular library and version

number. CVEs can only be issued by a certified authority, and there is a time-

consuming reporting and proof of concept process that must be followed for

a vulnerability to be “official” enough to warrant a CVE number. CVEs are real,

demonstrable vulnerabilities.

D E V S E C O P S P L AY B O O K | V E R A C O D E

Practical Steps for Adopting DevSecOps

9

https://cwe.mitre.org/about/index.html
https://www.veracode.com/blog/2009/01/cwesans-top-25-most-dangerous-programming-errors
https://owasp.org/
https://www.nist.gov/

Vulnerability vs Security Flaw

Security flaws and vulnerabilities are perhaps the easiest two security terms

to mix up, leading many development and security teams to wonder what the

difference is between the two.

So, just because a flaw is not a vulnerability now, that does not mean it will

not become one in the future as environments and architectures change or

get updated. Any updates to the architecture or changes in the function of an

application can expose that application to attacks.

Once there is a known way to attack – or exploit – a flaw, the flaw becomes

a vulnerability. The difference is probably best summed up this way: all

vulnerabilities are flaws, but not all flaws are vulnerabilities. Plus, all flaws have

the potential to become vulnerabilities. In the case of Fail Fast, the flaw in their

code base became a vulnerability once an attacker figured out how to leverage it to

exfiltrate sensitive data.

False Positive

According to the (NIST), two ways to define a false positive are: “an alert that

incorrectly indicates that a vulnerability is present” or “an alert that incorrectly

indicates that malicious activity is occurring”. It appears this would be a

definition that’s straightforward enough to satisfy both developer and SecOps

practitioner’s question: What needs to be fixed?

However, the debate between development and security teams in many

organizations is that the security scan or evaluation of an application

identifies flaws that, in the context of the larger application portfolio, don’t

necessarily represent an exploitable flaw. This debate goes to the heart of the

miscommunication between developers and SecOps.

Flaws can be more or less likely to be exploitable. If a flaw falls into the “less

likely” category, the developers will call it a false positive and resist or become

suspicious about other flaws that are identified. Some vendors will allow labelling

of a “flaw that isn’t a vulnerability now” as a false-positive. Veracode requires

these be mitigated, so that we do not lose track of it in the event that it does

become a vulnerability in the future.

To put it simply, a security flaw is an implementation defect that can lead

to a vulnerability, and a vulnerability is an exploitable condition within the

code that allows a bad actor to attack.

1 0D E V S E C O P S P L AY B O O K | V E R A C O D E

https://csrc.nist.gov/glossary/term/false_positive

D E V S E C O P S P L AY B O O K | V E R A C O D E

Embed Security into the Software
Development Lifecycle

With the teams at Fail Fast using the same words to describe their

work, they were ready for automating the tasks that would ultimately

drive down security debt and reduce the likelihood of adding new

flaws.

We created the following six steps to securing the SDLC based on

learnings from nearly two decades of helping teams achieve and

maintain application security programs. Note that the steps may not

happen in the same order for everyone, but they form the six essential

elements we see time and time again. To learn about them in greater

detail, please read Veracode’s 6 Steps to Secure the SDLC eBook.

1 1

https://info.veracode.com/rs/790-ZKW-291/images/Veracode-Secure-the-SDLC-eBook.pdf

1 2D E V S E C O P S P L AY B O O K | V E R A C O D E

Discover sources of risk and what to prioritize

The first key element to securing your SDLC is discovering and inventorying your application

portfolio to understand sources of risk and what you want to prioritize. How many applications do

you have? Where do they reside? Who owns them? Are they still around? What are your open-source

dependencies?

Fail Fast realized they could not secure what they could not see, and that a comprehensive inventory

of their attack surface was critical. Their first step was understanding what applications they had, what

was in those applications, and what systems their teams used. They were struggling to identify all the

applications, dependencies, and systems, and they felt as though they were boiling the ocean. They

decided to focus first on just the applications they had already inventoried – knowing they could always

iterate from there.

1

1 3D E V S E C O P S P L AY B O O K | V E R A C O D E

Developers

• Static Application Security Testing (SAST) - Scanning

source or binary code in a-pre-production or “static”

state to find security flaws or CWEs. Also called “white

box” testing.

• Software Composition Analysis (SCA): Analyzing the

open-source libraries and third-party components in an

application for CVEs. Used in the creation of Software

Bill of Materials (SBOM) and supports one or both

standard formats: CycloneDX and SPDX.

Security Teams, Vulnerability Managers, or Operations

• Dynamic Application Security Testing (DAST):

Simulating attacks in a production, runtime, or

“dynamic” state to expose configuration and end-point

weaknesses also known as “black box” testing.

Note: SAST finds security flaws while DAST
finds vulnerabilities.

Onboard applications with an initial scan to establish a
baseline and gain visibility

After Fail Fast had a good enough understanding and mapping of

the applications, libraries, and artifacts that made up their software

development portfolio and process, they onboarded applications with

an initial scan to establish a baseline and visibility.

They were able to quickly scan thousands of applications using

Veracode’s cloud platform. They got an initial snapshot of potential

issues in the code they wrote in-house and in their third-party

components. They understood what was in the applications they had

and decided how to automate the use of scanning engines moving

forward.

One of the issues Fail Fast ran into was having one security person

running tests while also figuring out how to triage and address the

results of those tests. Everyone has a part to play in DevSecOps. They

identified lead developers, scrum masters, and DevOps leads and let

them know exactly what tests to run, when to run them, and how to

automate the testing.

2

1 3

1 4D E V S E C O P S P L AY B O O K | V E R A C O D ED E V S E C O P S P L AY B O O K | V E R A C O D E

This is a recommended policy for microservices.

Here are two examples. This is a recommended policy for most applications.

Define and assign security policies
for applications

Policy sets clear expectations and rules with which applications must

comply. At Fail Fast, the policy was not clear so compliance with it was

not either. They needed to bring security and development teams,

including board level, together around a common policy based on risk

tolerance, DevOps processes, maturity, team capacity, and more.

Qualifying risk tolerance and setting policy is massively complex. Fail

Fast did not have anyone on their team with quite the skill set to do

this, so they relied on Application Security Consultants from Veracode

to easily resolve this problem without having to wait for the hiring

process to run its course.

Fail Fast started with Veracode’s built-in security policies

recommendations for applications based on business criticality; they

planned to tailor them later and restrict findings by severity, CWE

category, CWE ID, license risk, Common Vulnerability Scoring System

(CVSS) score, or a common standard such as OWASP, OWASP Mobile,

CWE Top 25, or Precast/Prestressed Concrete Institute Security

Standards Council (PCI SSC).

3

1 4

1 5D E V S E C O P S P L AY B O O K | V E R A C O D ED E V S E C O P S P L AY B O O K | V E R A C O D E

Triage and address findings in developer workflows

When Fail Fast onboarded applications, they found thousands of flaws that had

accumulated in their codebase as security debt. They needed a plan for how to

get all their onboarded apps to pass their new policy. They needed to prioritize

developer time on high-impact efforts to bring legacy apps into compliance and

successfully deploy new applications securely into production. Upon finding

a policy-violating flaw, teams would process and resolve that finding through

remediation or mitigation.

In order to tackle the security flaws in their old apps (while automated scanning

and triaging happened concurrently in new builds), Fail Fast created simplified

metrics over 30, 60, and 180-day increments through which they tracked

applications in scope or discovered, onboarded, compliant, and resilient (apps

built with security proactively built in from the start).

4

0

10

20

30

40

50

60

70

80

Day 30

0

5

10

15

20

25

30

35

40

45

Day 60

0

10

20

30

40

50

60

70

Day 180 / 6 months

1 5

1 6D E V S E C O P S P L AY B O O K | V E R A C O D E

Leverage reporting to measure, manage, and improve outcomes

The simplified metrics used in Step 4 were a great starting place for measuring success, but

the board wanted more information. Fail Fast knew that asking the right questions resulted in

measuring the right things. They started with questions such as: How many flaws do we have?

How quickly are we fixing them? Who is shipping the safest/riskiest code? How do we compare

against similar organizations in the industry?

Fail Fast needed reports available on-demand so leaders and teams could see the real-time

status and health of the application security program. That way they could establish a baseline,

identify areas for improvement, set quantitative goals, and track progress against those goals.

Beyond measuring, managing, and monitoring the health of their application security program,

their reporting also needed to satisfy the demands of their board and regulators, provide security

assurance to customers, and enable go-to-market teams to demonstrate and leverage security as

a competitive advantage in-market.

Using Veracode’s robust analytics – including patented peer benchmarking and the State of

Software Security report with insight into macro trends across Veracode customers – they

identified strengths and weaknesses, analyzed flaw and remediation performance, and

prioritized high-value activities targeting specific application security goals.

5

D E V S E C O P S P L AY B O O K | V E R A C O D E 1 7

Prevent security flaws via education and technical controls in the CI/CD process

With much of the automation underway, Fail Fast began working on ways to prevent security flaws

from entering code in the first place. They brought security and development teams together to agree

on mechanisms and controls that prevent security flaws in first-party code, shared libraries, third-party

components, and open-source dependencies from reaching production. This was the beginning of

fostering a secure coding culture.

Via technical controls in the CI/CD process, they established a continuous feedback loop that monitors

compliance with policies and ensures that if code drifts from policy – or if any new flaws are created –

teams are alerted, and the violations are addressed.

In addition to establishing preventive controls in the pipeline, they leveraged reporting to track the

nature of issues being introduced and identify skill gaps. This information was used to design security

programs and training curricula to target areas of concern.

They also provided developers with contextual – and intelligent – remediation tools to help them develop

software that is secure from the start. With all the competing demands and concerns developers face,

intelligent security solutions that let developers implement a code change or update a vulnerable library

with a pull request liberates them from much of the time and effort of manually fixing flaws.

6

For example, they noticed a certain CWE causing many applications to violate policy, and they led

a CWE burn down effort to focus on those findings. In another instance, one team was struggling to

remediate a certain category of flaw within the grace period, so they designed a security training

curriculum that provided the team with hands-on experience remediating code in sample applications.

D E V S E C O P S P L AY B O O K | V E R A C O D E

In Summary

While the story of Fail Fast Technologies may

relate to many organizations, all journeys to

application security maturity are different.

Different organizations have different needs

and priorities. Some need to tackle seemingly

insurmountable security debt in their legacy

code base. Others prioritize rapid and secure

development of cloud-native applications.

Regardless of the journey, the path to

maturity converges around core objectives:

full visibility into the application portfolio

with regular automated scans; all applications

in compliance with a well-defined security

policy; and the prevention of new flaws from

reaching production.

1 8

1 9D E V S E C O P S P L AY B O O K | V E R A C O D E

DevSecOps is not a destination; it is a journey. Not a state to attain, but a process to enact and

maintain. You must integrate and re-integrate security and continuously adapt to stay pervasive

(but not invasive) as the development needs and tooling change.

No matter your journey, Veracode supports you every step of the way. The Veracode Continuous

Software Security Platform enables you to establish comprehensive security around your

legacy and cloud-native applications. We support you in seamlessly integrating security into

your entire SDLC, bringing security and development together, and providing a vehicle to define

and implement a set of security policies that align to the business criticality and operating

environment of software in production. With Veracode solutions, support, and services, you can

avoid and overcome the challenges of securing your software from start to finish.

“We chose Veracode because it was the easiest and best solution
when it comes to integrating into our existing processes.”

- Andrew McCall, VP of Engineering, Azalea Health

Click here to schedule a demo of Veracode today and let us show you how easy we can make

DevSecOps for your organization.

Conclusion

https://info.veracode.com/veracode-solution-demo.html

Veracode is a leading AppSec partner for creating secure software,

reducing the risk of security breach, and increasing security and

development teams’ productivity. As a result, companies using Veracode

can move their business, and the world, forward. With its combination of

process automation, integrations, speed, and responsiveness, Veracode

helps companies get accurate and reliable results to focus their efforts on

fixing, not just finding, potential vulnerabilities.

Learn more at www.veracode.com, on the Veracode blog and on Twitter.

Copyright © Veracode, Inc. All rights reserved. Veracode is a registered trademark of

Veracode, Inc. in the United States and may be registered in certain other jurisdictions.

All other product names, brands or logos belong to their respective holders. All other

trademarks cited herein are property of their respective owners.

https://www.veracode.com
https://www.veracode.com/blog
https://twitter.com/Veracode

	Introduction
	DevSecOops – A Cautionary Tale
	What Went Wrong?
	The Role of Security in Modern
Software Development
	What is DevOps?

	What is DevSecOps?
	The Benefits of DevSecOps
	Practical Steps for Adopting DevSecOps
	Establish a Common Vernacular
	Embed Security into the Software Development Lifecycle

	Conclusion

