
Prevention Guide

Preventing Broken
Access Control
Vulnerabilities:
A developer's guide
Practical steps to keep your web applications
and APIs safe and secure

2 | Preventing Broken Access Control: A developer's guide veracode.com

3

3

4

5

7

8

10

11

Securing Web Applications and APIs: Best Practices

Understanding Broken Access Control

Types of Broken Access Control Vulnerabilities

Severity Level of Broken Access Control Vulnerabilities

Detect Broken Access Control Vulnerabilities

Prevent Broken Access Control Vulnerabilities

Best Practices to Prevent Privilege Escalation Attacks

Strengthen Your Web Applications and APIs Against Attack

Table of Contents

https://www.veracode.com/
https://www.veracode.com/

3 | Preventing Broken Access Control: A developer's guide veracode.com

Securing Web Applications and APIs

Access control is essential in modern web development as it allows for the

management of permissions granted to users, processes, and devices for accessing

application functions and resources. It also determines the level of access allowed

and tracks activities performed by specific entities.

Broken access control vulnerabilities occur when malicious users exploit limitations

on their actions or access to objects. Attackers often exploit access control failures

to gain unauthorized access to application resources, execute malicious commands,

or obtain privileged user permissions. This guide covers broken access control

vulnerabilities, the severity of associated attacks, and common prevention

techniques.

Understanding Broken Access Control

Access control issues allow unauthorized users to access, modify, or delete resources

beyond their intended permissions. Broken access control includes security

vulnerabilities commonly exploited to gain higher privilege levels. Creating secure and

efficient access control systems can be challenging, especially when dealing with

application functions that have evolved without deliberate design.

Developers often overlook how entities access resources, leading to hidden

authorization flaws. These flaws are easily discovered and exploited, making them a

prime target for common attacks.

https://www.veracode.com/
https://www.veracode.com/

4 | Preventing Broken Access Control: A developer's guide veracode.com

Types of Broken Access Control Vulnerabilities

Broken access control vulnerabilities mostly lead to privilege escalation attacks and are characterized by how the malicious user exploits

and modifies access rights. The primary forms of access control vulnerabilities include:

Horizontal Privilege Escalation

Horizontal privilege escalation vulnerabilities occur when a

user can access the accounts of other regular users with the

same level of permissions. Attackers exploit these

vulnerabilities to gain access to legitimate user data and carry

out various malicious activities, including ransomware attacks,

financial fraud, unauthorized money transfers, exposure of

sensitive files, and data deletion. Unlike vertical privilege

escalation, horizontal attacks do not typically require advanced

tools and can be executed with simple steps, such as:

• Modifying the URL‘s request ID parameter with legitimate

user details obtained through some form of social engineering

• Reviewing the application code to identify authentication

vulnerabilities at the source code level

• Using third-party code review tools combined with

security testing tools

• Enumerating user accounts on Linux machines maintains

their hold of the identification process

Context-based Privilege Escalation

A hybrid attack involves a two-step process where the attacker

first gains access to regular user accounts and then exploits

broken vertical access controls to obtain administrative rights.

Context-based privilege escalation attacks exploit business

logic to enable users to perform actions that are typically

restricted within their security context. Examples of context-

based privilege escalation include:

• Leveraging Insecure Direct Object Reference vulnerabilities

to access critical resources via user-supplied input

• Using corrupt HTTP referer headers to access functionality

and sensitive files beyond their permitted context

• Location-based attacks

Vertical Privilege Escalation

Vertical privilege escalation, also known as privilege elevation,

occurs when an unauthorized user gains higher privilege levels,

typically admin privileges. This type of attack typically follows

an initial breach, as the attacker aims to acquire permissions

beyond those of the compromised subject. Compared to

horizontal escalation, vertical privilege escalation attacks are

more sophisticated, requiring root or kernel-level modifications

to gain administrative access.

Once attackers obtain admin rights, they can inject malicious

code, disrupt critical business functions, or compromise the

availability of essential application resources. Hackers employ

various techniques to exploit vertical access controls,

including:

• Using the Windows Sysinternals suite to create backdoor

administrative users

• Using process injection to mimic administrative functions

• Leveraging directory listing vulnerabilities to disclose

information about the access control policy

• Using social engineering for direct access to admin accounts

https://www.veracode.com/
https://www.veracode.com/

5 | Preventing Broken Access Control: A developer's guide veracode.com

Severity Level of Broken Access Control

Broken access control is recognized by the Online Web Application Security Project (OWASP) as a prevalent and

highly critical vulnerability. It enables attackers to impersonate various user types and gain control over legitimate

user accounts. The consequences of a privilege escalation attack can be severe, depending on the specific

vulnerability exploited. Some attack scenarios include:

• Use of insecure IDs

Attackers randomly guess the references for users, roles, objects, contents, and functions. Hackers can easily manipulate

access control rules to obtain elevated privilege levels if the vulnerable application does not sanitize the supplied user input.

• Forced browsing

Most applications use multiple security checks to grant access to critical resources within the website‘s backend. Hackers use

brute force techniques to bypass the pages running authentication checks, obtaining direct access to web resources.

• Path transversal attacks

The hacker includes a relative path within a URL request, which may grant them direct access to sensitive files.

• Cache attacks

Web browsers store frequently accessed web pages locally within the cache memory. Attackers can obtain cache data and

exploit them to replicate administrative functions and orchestrate deeper attacks.

• File permissions

This vulnerability affects files stored on a web server that should not be publicly available. If the server‘s OS mechanism allows

these directories to be readable, attackers can modify application scripts, configuration files, and other default files to cause

operational inefficiency.

Cross-site Request Forgery (CSRF) is another vulnerability in the Broken Access Control category. These vulnerabilities are

widespread in modern web applications due to the use of predictable parameters for actions. However, detecting CSRF

vulnerabilities is relatively straightforward through code analysis and application security testing. The identification technique

involves multi-stage payload delivery and is well-documented. As a result, the severity of a CSRF vulnerability is generally

considered to have an average level of exploitability.

https://www.veracode.com/
https://www.veracode.com/

6 | Preventing Broken Access Control: A developer's guide veracode.com

Impacts of a privilege escalation attack include:

• Takeover of site administration functions

• Modification or deletion of site content

• User account takeover

• Delivery of malicious payloads

• Distributed denial-of-service

• Unauthorized money transfer

Vulnerabilities associated with broken access control fall under several common weaknesses and enumerations, including:

• CWE-23: Relative Path Traversal

• CWE-59: Improper Link Resolution Before File Access (Link Following)

• CWE-201: Exposure of Sensitive Information Through Sent Data

• CWE-219: Storage of File with Sensitive Data Under Web Root

• CWE-275: Permission Issues

• CWE-284: Improper Access Control

• CWE-352: Cross-Site Request Forgery (CSRF)

• CWE-377: Insecure Temporary File

• CWE-402: Transmission of Private Resources into a New Sphere (Resource Leak)

• CWE-425: Direct Request (Forced Browsing)

• CWE-441: Unintended Proxy or Intermediary (Confused Deputy)

• CWE-497: Exposure of Sensitive System Information to an Unauthorized Cont-rol Sphere

• CWE-538: Insertion of Sensitive Information into Externally-Accessible File or Directory

https://www.veracode.com/
https://www.veracode.com/

7 | Preventing Broken Access Control: A developer's guide veracode.com

Detect Broken Access
Control Vulnerabilities

Through AI-driven testing and application security testing, the Veracode

Software Security Platform helps you generate an in-depth analysis of your

tech stack’s security and access control. The platform includes dynamic

application security testing that collectively analyzes for broken access

control vulnerabilities such as:

• Privilege Escalation Scanner

A vulnerability scanner built to alert admins of any flaws

that may lead to abuse of existing access control mechanisms

• CSRF Scanner

Helps prevent access control attacks using malicious payloads

submitted through a trusted normal user

• URL Fuzzer Scanner

Prevents privilege escalation attacks orchestrated through forced

browsing or modifying URL request parameters with a relevant

admin URL

• HTTP Header Scanner

Prevents the use of modified HTTP referer headers to access

critical resources beyond the current security context

• Fingerprinting Scanner

Detect attack surfaces that expose application server

implementations, privacy laws, and the web application‘s

access control policy to external domains

Veracode's dynamic application security solution streamlines manual efforts,

enabling developers to prioritize secure design and threat mitigation policies.

It provides actionable security reports that can be easily shared with cross-

functional teams, clients, and executives, fostering a collaborative security

approach that spans across all areas of an organization.

https://www.veracode.com/
https://www.veracode.com/
veracode.com/platform

8 | Preventing Broken Access Control: A developer's guide veracode.com

1.

Multi-factor Authentication

Multi-Factor Authentication (MFA) is a zero-trust security approach that employs multiple access control checks to deter hackers

from carrying out malicious activities, even if they possess legitimate user credentials. This defense strategy combines various

authentication mechanisms to verify a user's identity. During implementation, two or more forms of identification (such as tokens or

biometric IDs) are required before granting access. This effectively prevents unauthorized users from exploiting user accounts and

mitigates broken access control attempts.

2.

Unit and Integration Tests

To prevent access control flaws in code, development teams should incorporate unit tests throughout the Software Development

Life Cycle (SDLC). Unit testing assesses individual modules to verify proper implementation of access control in application code and

identify any privilege management vulnerabilities at the class level. Additionally, integration tests encompass a broader scope,

including third-party and open source components utilized in the application's construction. This comprehensive testing approach

evaluates the overall security posture of the application.

3.

Session Management

Session management is a crucial aspect of secure software development. It involves the proper implementation of session IDs,

authentication tokens, and cookies to prevent session hijacking attacks. These measures include forcibly deleting session-related data

on the application server when a user logs out. It is also advisable to implement session timeouts that require re-authentication and a

new token when a user reconnects to the server after logging out. Additionally, designers and developers should avoid exposing

session IDs in URLs, as this could be exploited by attackers for session theft.

Broken Access Control Prevention Techniques

https://www.veracode.com/
https://www.veracode.com/

9 | Preventing Broken Access Control: A developer's guide veracode.com

4.

Proper Authorization Schemes

Using CSRF tokens in custom request headers provides a stronger defense against CSRF attacks by enforcing the same origin

policy restriction. However, it's important to note that modern browsers do not support the transportation of custom headers with

Cross-Domain requests by default. Custom headers can only be added in JavaScript or within the script's origin. This stateless

CSRF mitigation technique requires no changes to the user experience, making it particularly valuable for securing

Representational State Transfer (REST) services.

In addition to scalability and agility, software developers should prioritize robust access controls and security when building

applications. Effective control units can be created through authorization models.

• Discretionary access control
This model limits access based on the subject's identity or group membership. Subjects with direct access permission

can also assign that permission to other subjects.

• Mandatory access control
In this mechanism, access to resources is secured based on the sensitivity of the information they hold. Administrators

label data with security levels and categories, allowing subjects to access only the information that matches their

security label.

• Role-based access control
This scheme divides network subjects into roles, with each role having specific access levels. Users are assigned roles

that grant them access to the necessary information and functionality for their duties. Roles are typically based on job

competency, authority, and responsibility.

• Attribute-based access control
This model permits or denies information exchange based on various properties, such as the requesting entity,

requested action, context of information exchange, or the requested resource. Properties used in attribute-based

authorization include location, threat level evaluation, time of day, and security measures implemented on the

requested resource.

•

https://www.veracode.com/
https://www.veracode.com/

10 | Preventing Broken Access Control: A developer's guide veracode.com

1.

Enforce the Law of Least Privilege

One of the initial steps in controlling access privileges is to

deny access by default for all public resources. This means that

each user should only be granted the permissions necessary to

perform specific functions, and no more. This approach,

known as the principle of least privilege, follows a zero-trust

philosophy in information exchange, ensuring that subjects are

not given privileges beyond what is required.

3.

Writing Application Code and Business Logic
With Authorization Controls in Mind

Software developers and business designers must ensure their

program and business logic includes rules that define access to

resources and functionality at the code level. Once the system

has authenticated a subject, their privileges to objects should be

limited by their roles and identity.

3.

Perform Server-side Controls
To simplify the remote management of access control

routines, it is recommended to perform user authentication,

input validation, and request processing at the server-side.

This approach eliminates the need for traditional keys to

enforce privilege decisions and allows for easy tracking of all

access attempts and activities.

2.

Use Centralized Authorization Oversight

Implementing access control policies and routines from a

centralized location is a recommended approach. This

allows for quick application of vulnerability fixes as soon as

they are identified. Centralization also eliminates the need

for manual effort in applying access control policies to

every page containing sensitive files and information.

4.

Test and Audit Access Controls Frequently

In addition to manual testing, it is advisable to use automated

scanning tools for continuous monitoring of access control

flaws that do not align with an organization's security policy.

Continuous testing and vulnerability scanning help evaluate

the effectiveness of access control mechanisms and uncover

emerging vulnerabilities within the system.

Security Best Practices to Prevent
Broken Access Control

https://www.veracode.com/
https://www.veracode.com/

11 | Preventing Broken Access Control: A developer's guide veracode.com

Veracode Dynamic Analysis is a dynamic application security testing solution

that establishes a continuous and automated process for security testing. It

effectively uncovers access control flaws with minimal false positives. This

solution seamlessly integrates with popular software stacks and security

platforms, allowing teams to initiate dynamic application security testing within

minutes

When used in conjunction with Veracode's Software Security Platform, it

becomes a comprehensive solution that identifies security risks across your

entire tech stack. By combining Dynamic Analysis with Static Analysis and

Software Composition Analysis, you can prevent the introduction of new

flaws and significantly reduce risk over time in your modern software

development processes.

Strengthen your software against broken access control vulnerabilities by

trying Veracode Dynamic Analysis for free with a 14-day trial.

Start Your Free, 14-Day Trial

Strengthen Your Web
Applications and APIs
Against Attacks

https://www.veracode.com/
https://www.veracode.com/
https://www.veracode.com/products/software-composition-analysis
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/
https://www.veracode.com/products/dynamic-analysis-dast
https://www.veracode.com/products/veracode-dynamic-analysis-free-trial

Veracode is intelligent software security. The Veracode

Software Security Platform continuously finds flaws and

vulnerabilities at every stage of the modern software

development lifecycle. Prompted by powerful AI trained by

trillions of lines of code, Veracode customers fix flaws faster

with high accuracy. Trusted by security teams, developers,

and business leaders from thousands of the world’s leading

organizations, Veracode is the pioneer, continuing to

redefine what intelligent software security means.

Learn more at www.veracode.com,

on the Veracode blog and on Twitter.

Copyright © 2024 Veracode, Inc. All rights reserved. Veracode is a

registered trademark of Veracode, Inc. in the United States and may be

registered in certain other jurisdictions. All other product names, brands

or logos belong to their respective holders. All other trademarks cited

herein are property of their respective owners.

https://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

	Understanding Broken Access Control
	What is Broken Access Control
	Types of Broken Access Control Vulnerabilities
	Severity Level of Broken Access Control
	Detect Broken Access Control Vulnerabilities
	Broken Access Control Prevention Techniques
	Security Best Practices to Prevent
Broken Access Control
	Strengthen Your Web Applications and APIs Against Attack

