
Preventing API
Vulnerabilities:
A complete guide
Steps to keep your web applications

and APIs safe and secure

Guide

2 | Preventing API Vulnerabilities: A complete guide veracode.com

Table of Contents

3 Understanding API Vulnerabilities and Attacks

4 API Vulnerabilities: A Deep Dive

7 Exploring the 6 Types of API Attacks

8 API Attacks: Assessing Severity Levels

9 Best Practices to Prevent API Vulnerabilities

11 Strengthen Your Web Applications and APIs Against Attacks

https://www.veracode.com/
https://www.veracode.com/

3 | Preventing API Vulnerabilities: A complete guide veracode.com

Understanding API
Vulnerabilities and Attacks

An application programming interface (API) is a set of programming codes

that allows the seamless integration between various software applications,

processes, and users. The machine-readable interface is fundamentally built

to exchange data and functionality without modifying an existing application,

enabling cross-platform consistency while reducing the manual overhead of

developing and maintaining a tech stack. While APIs offer enormous benefits

to modern application delivery, the interface is also susceptible to cyberattacks

without security practices and tools.

This guide discusses common vulnerabilities associated with APIs, API attack

types, and recommended prevention practices.

https://www.veracode.com/
https://www.veracode.com/

4 | Preventing API Vulnerabilities: A complete guide veracode.com

API Vulnerabilities: A Deep Dive

Since insecure implementation of APIs can expose sensitive data and application logic, they are a prime target for cybersecurity attacks

that reveal critical information and compromise enterprises’ systems. It’s no surprise that API attacks continue to cause worry among

organizations that rely on modern computing.

Here are some common API vulnerabilities:

1.

Broken Object Level Authorization (BOLA)

The BOLA vulnerability is one of the most common and severe API vulnerabilities according to the OWASP API Security Top 10. Also

known as Insecure Direct Object Reference (IDOR), the vulnerability develops when the API incorrectly exposes sensitive fields stored

within an object.

When a vulnerable API relies on client-side object IDs rather than the client‘s state to make decisions on object access, attackers

can replace the object ID in the API call with that of a different user. In instances where the API endpoint does not perform adequate

object-level authorization checks, attackers can gain access to a vulnerable user‘s data or orchestrate a complete account takeover.

2.

Excessive Data Exposure

APIs are data sources that often rely on the client to filter data within the response. In generic API implementations, developers include all

data and functionality withinthe API response sent to the client browser without filtering or masking sensitive information. Hackers can

intercept such API communications and misuse sensitive data to perform reconnaissance and enumeration for advanced attacks.

https://www.veracode.com/
https://www.veracode.com/

5 | Preventing API Vulnerabilities: A complete guide veracode.com

3.

Improper Asset Management

APIs expose multiple endpoints having numerous versions, functionalities, and parameters that affect the operation of these endpoints.

This necessitates development teams to build and maintain detailed API assets documentation covering all hosts, endpoints, and

versions. Lack of proper documentation and improper management of API assets makes it difficult for teams to identify and mitigate

implementation issues such as exposed endpoints or deprecated API versions.

4.

Broken Authentication

This is one of the most common API vulnerabilities attackers target to exploit the inadequate implementation of user authentication

tokens. An exposed API key or broken authentication functionality allows malicious actors to access the endpoint, enabling them to

compromise security controls and widen their reach of subsequent attacks.

5.

Insufficient Resources and Rate Limiting

Poor implementation of resources and rate-limiting affects the API‘s ability to restrict the number of requests or bot traffic generated

from a single source. While this makes APIs vulnerable to brute-force attacks, DoS attacks, and performance issues, the misconfiguration

also aids the exploitation of other API vulnerabilities such as broken object-level authorization. Such vulnerabilities enable attackers to

overload the APIs by submitting numerous requests using bot traffic, making the server unavailable and disrupting the business.

6.

Mass Assignment

This vulnerability exploits the feature of the application framework that allows developers to assign user input values to multiple program

variables or objects simultaneously. Attackers target this vulnerability to overwrite existing server-side variables, initialize new variables,

execute malicious code, or access sensitive data. Attackers can also craft malicious requests to include additional unintended parameters,

thereby adversely affecting the functionality of an application.

https://www.veracode.com/
https://www.veracode.com/

6 | Preventing API Vulnerabilities: A complete guide veracode.com

8.

Security Misconfiguration

Developers often miss security hardening across the entire API stack, making the API vulnerable to security threats. Such instances allow

attackers to uncover misconfigurations and exploit them as vectors for unauthorized user and system data access. Some common security

misconfigurations of APIs include:

• Usage of inadequate authentication/default credentials

• Use of unnecessary HTTP methods

• Misconfigured response headers

• Cross-origin resource sharing

• Exposed cloud resources

• Unsanitized incoming requests

• Data leakage

7.

Broken Function Level Authorization

This vulnerability occurs when the API:

• fails to properly implement access control functions that an authorized user can perform, or

• cannot segregate the access limits of administrative and regular users.

Malicious users exploit these authentication flaws to access restricted and sensitive actions such as administrative functionalities,

facilitate further attack advancement or complete account take over.

9.

Insufficient Logging & Monitoring

Inefficient or missing logging and monitoring mechanisms are a prevailing vulnerability for APIs. Security incidents

often go undetected without adequate monitoring mechanisms, enabling attackers to orchestrate further

attacks on the system. Without consistent logs to track, it is also near impossible for security teams

to backtrace security incidents and inherent flaws that lead to issues such as failed authentication

checks, input validation failures, and other warnings that make the system susceptible

to API attacks.

https://www.veracode.com/
https://www.veracode.com/

7 | Preventing API Vulnerabilities: A complete guide veracode.com

Exploring the 6 Types of API Attacks

Injection Attacks

Injection attacks are a broad class of API attack vectors that

extend longstanding potential threats against APIs and web

applications. Attackers inject malicious code to a poorly developed,

unsecured API, ensuring unauthorized access to the software code

and data. To do so, hackers typically inject malicious OS commands,

XML parameters, or SQL queries to be executed by the server.

A successful attack results to data loss, theft, denial of service, or

comprehensive compromise of legitimate user/system accounts

Denial of Service (DoS) Attacks

Also known as Distributed Denial of Service (DDoS), attacks

involve sending numerous incoming requests to the target server

to cause overload and become inaccessible to legitimate users.

Instead of targeting specific functions or data, these attack

types typically target the entire API endpoint. These attacks are

often severe since they cause loss of revenue, reputation, and

intellectual property of an organization.

Parameter Tampering Attacks

In this attack, the malicious actor targets the application‘s business

logic exposed by the API. Hackers usually leverage vulnerabilities

in backend validation to manipulate parameters within an API

request, subsequently enabling them to bypass security controls

that use these parameters. While parameters raise the level of

control over the application‘s behavior, they also allow malicious

users to modify API request query parameters or input fields

within a web form.

Man-in-the-Middle (MITM) Attacks

The man-in-the-middle attack is an eavesdropping exploit where

threat actors position themselves between an authorized user

and the API endpoint. Such unauthorized users act as a third party

who intercepts, alters, and selectively relays API calls between two

interacting entities. MITM attacks often occur in web applications

with insufficient cryptography, allowing the hacker to intercept

and decrypt messages in transit.

Authentication Hijacking Attacks

APIs configured to have state as part of their workflow contain

information on generating and storing sessions. In vulnerable

applications, threat actors can perform session replays to

uncover personal data and credentials the API associates with

a regular user, such as API keys, session cookies, and access

tokens. Attackers can further exploit this information to assume

legitimate users‘ identities. Malicious actors also leverage identity

and credential management errors to obtainstolen authentication

tokens of user accounts and application data.

Cross-Site Request Forgery (CSRF) Attacks

Stateful APIs are vulnerable to CSRF attacks if they accept and use

cookie data to manage the session. These APIs persist credentials

within the endpoint, which the bad actors can obtain and use to

send requests from malicious sites. If a leaky API server accepts

non-HTTPS requests, the attacker can spoof the API response

header, enabling legitimate users to perform malicious actions

on their behalf.

Due to the ubiquity and the data they expose, APIs are one of the most popular attack vectors in modern tech stacks.

Attacks targeting API endpoints include:

https://www.veracode.com/
https://www.veracode.com/

8 | Preventing API Vulnerabilities: A complete guide veracode.com

The severity and impacts of a successful attack typically vary depending on the security vulnerability exploited, the actions performed by

the unauthorized user, and the data targeted. Consequences of a successful API attack include:

10.

Account takeover/

impersonation of

regular users

11.

Bypassing authentication/

authorization controls

4.

Data breaches/exposure

of sensitive data

6.

Content scraping

and intellectual

property theft

7.

Service/function

unavailability

3.

Credit card fraud

API Attacks: Assessing Severity Levels

2.

Data deletion

5.

Manipulation of

response headers

1.

Privilege escalation

9.

Alteration of API calls

and database queries

8.

Loss of revenue/

business reputation

https://www.veracode.com/
https://www.veracode.com/

9 | Preventing API Vulnerabilities: A complete guide veracode.com

Deploying a Web Application Firewall

A web application firewall generates logs for transactions,

errors, and access, which can be used for user behavior analytics,

application troubleshooting, and other practices for effective API

security. An efficient firewall administers security controls based

on the OpenAPI or Swagger definition of the API.

Once deployed, the firewall checks the API definition to distinguish

between unauthorized users and regular traffic. The protection

configuration defines a whitelist of allowed operations and data

input and applies to outgoing and incoming traffic. API developers

can define a customized set of access control instructions in the

API‘s OpenAPI or Swagger definition to allow or block specific

web requests.

WAF is commonly used to protect API Gateways from different

web exploits such as XSS and MITM attacks by restricting the

interception of application traffic. Additionally, WAF helps mitigate

DDoS attacks on application-layer and SQL injection attacks by

utilizing strong SSL/TLS encryption.

API Rate-Limiting

Rate-limiting effectively helps combat API vulnerabilities such

as DoS, DDoS, and brute force attacks. Rate-limiting acts as a

gatekeeper for controlling the number of incoming/outgoing

requests an API can handle at a given time and is usually achieved

using throttling and quotas. Throttling and quotas protect

endpoints from being overwhelmed by numerous requests

causing disruptions in standard API processing and unusual

resource spikes. If the request exceeds the permitted limits, the

API response returns an error message while enforcing a waiting

period before the user/process can re-establish the connection

through the API.

Enforcing Transport Level Security

Transport level security (TLS) is often considered the first line

of defense against API attacks. The protocol facilitates secure

and encrypted API communications, protecting the data in transit

while supporting mutual authentication mechanisms to ensure

legitimate access to APIs.

Enforcing TLS protocol ensures client information reaches only

the intended and authorized recipients, preventing attacks such

as parameter tampering, eavesdropping, and man-in-the-middle

attacks. Developers should supplement transport level security

measures alongside an access control list to prevent unauthorized

access to the API server for effective protection.

Openid Connect (OIDC)

OIDC and OAuth 2.0 are the two fundamental elements for

securing API logins and the data exposed by such APIs. OIDC

is an authentication protocol that uses OAuth 2.0 grant types to

add an identity layer for storing and verifying user profiles and

login information.

OIDC also helps with authentication and authorization of users

through single sign-on to API workloads. The protocol offers

optional security measures for encryption and signing while relying

on access codes, passwords, and implicit credentials to obtain the

legitimate user‘s identity.

Best Practices to Prevent API Vulnerabilities

Given the damage API attacks cause, it’s best to know some of the prevention techniques to defend yourself. Here are some of them:

https://www.veracode.com/
https://www.veracode.com/

10 | Preventing API Vulnerabilities: A complete guide veracode.com

Enforce the Principle of Least Privilege

This practice is recommended as it minimizes the attack surface

and reduces the security risk of unauthorized access to critical

data/ processes. Adhering to the least privilege principle, security

teams should grant authorized users only the minimum required

access to perform a permitted action. APIs should also be

provided access to the data and processes required for

completing a transaction to avoid excessive data exposure.

Create and Update API Inventories

APIs are a cornerstone of modern digital transformation, with

enterprises deploying numerous public-facing APIs to make their

applications flexible and easy to integrate. An organization‘s

security experts must maintain an updated inventory of all

deployed APIs, their state, and services for efficient management

and contingency planning. To administer robust security of

an organization‘s API, it is recommended to conduct periodic

perimeter scans that help identify vulnerability and tag

APIs appropriately.

Perform user input validation

As often unauthorized users submit requests from compromised

accounts while parading as legitimate users, the API server should

not blindly consume input data provided by any API client. It is

recommended to implement proper input validation techniques

both at the server and client-side to validate the input before

passing it to the endpoints properly. API developers should

also define rules that help identify malicious incoming requests,

preventing hackers from submitting harmful code or modified

queries that can compromise the API endpoint.

Use an API Vulnerability Scanner

Software teams can enable continuous automated scanning and

monitoring of APIs to identify and mitigate vulnerabilities across

the complete API lifecycle. It is recommended for security teams

to utilize vulnerability scanners that automatically identify and

document security gaps against all known vulnerabilities.

Enforce strong authentication and

authorization mechanisms

APIs are publicly accessible and act as an entry points for an

organization’s internal systems. It is crucial to control and verify

the identity and permissions assigned to a user/process before

granting access to these APIs.

It’s a good practice for organizations to implement robust, proven,

and standard authentication mechanisms, such as JWT access

tokens, multi-factor authentication, and OAuth protocol, for

verifying the identity of API users sending the requests.

API authorization should be governed by role-based access

control, where every role is assigned with a pre-defined set of

permissions. Teams should adhere to the principle of least privilege

to ensure that only legitimate API users are allowed access to the

functions and data necessary for their role, reducing the chance of

malicious actors obtaining sensitive information.

https://www.veracode.com/
https://www.veracode.com/

11 | Preventing API Vulnerabilities: A complete guide veracode.com

Veracode Dynamic Analysis includes a built-in API vulnerability scanner

leveraging documented OpenAPI and Swagger profiles to scan an application

for vulnerabilities. The scanner comprehensively scans all endpoints to generate

an actionable report, including the vulnerabilities discovered, their respective

severity levels, and recommended remediation actions. The platform‘s automated

API vulnerability scanner seamlessly integrates with your existing workflow to

detect potential threats within API endpoints and other supporting components

of the interface.

Veracode Dynamic Analysis is part of the Intelligent Software Security Platform.

This platform seamlessly integrates security testing solutions such as Static

Analysis and Software Composition Analysis into your modern development

workflows to find and fix vulnerabilities across the entire software development

lifecycle (SDLC).

See how Veracode Dynamic Analysis can help prevent API vulnerabilities to

strengthen your software against attack with a free, 14-day trial.

Strengthen Your Web
Applications and APIs
Against Attacks

Start Free Today

https://www.veracode.com/
https://www.veracode.com/
https://www.veracode.com/products/dynamic-analysis-dast
https://www.veracode.com/products/dynamic-analysis-dast

Veracode is intelligent software security. The Veracode

Software Security Platform continuously finds flaws and

vulnerabilities at every stage of the modern software

development lifecycle. Prompted by powerful AI trained by

trillions of lines of code, Veracode customers fix flaws faster

with high accuracy. Trusted by security teams, developers,

and business leaders from thousands of the world’s leading

organizations, Veracode is the pioneer, continuing to

redefine what intelligent software security means.

Learn more at www.veracode.com,

on the Veracode blog and on Twitter.

Copyright © 2023 Veracode, Inc. All rights reserved. Veracode is a

registered trademark of Veracode, Inc. in the United States and may be

registered in certain other jurisdictions. All other product names, brands

or logos belong to their respective holders. All other trademarks cited

herein are property of their respective owners.

https://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

	Understanding API Vulnerabilities and Attacks
	API Vulnerabilities: A Deep Dive
	Exploring the 6 Types of API Attacks
	API Attacks: Assessing Severity Levels
	Best Practices to Prevent API Vulnerabilities
	Strengthen Your Web Applications and APIs Against Attacks

