
Preventing
JavaScript
Vulnerabilities:
A complete guide
Steps to keep your web applications

and APIs safe and secure

Guide

2 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

3 JavaScript Vulnerabilities: A popular target

3 What are JavaScript Vulnerabilities

4 Types of JavaScript Vulnerabilities

6 The Impact of JavaScript Vulnerabilities

7 How to Identify JavaScript Vulnerabilities

8 Techniques to Mitigate JavaScript Vulnerabilities

10 Best Practices to Prevent JavaScript Attacks

11 Strengthen Your Web Applications and APIs Against Attacks

Table of Contents

https://www.veracode.com/
https://www.veracode.com/

3 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

JavaScript Vulnerabilities:
A popular target

With the adoption of close to 98% of the world‘s websites, JavaScript

is undoubtedly one of the top programming languages used in modern

web applications. By offering a wide range of libraries, open-source

packages, and frameworks, JavaScript allows developers of any skill level

to create complex websites with little overhead. While the feature-rich

platform offers numerous benefits in developing dynamic websites

and mobile applications, the platform is also infamous of being a prime

target of attackers because of its inherent vulnerabilities.

This guide discusses common vulnerabilities in JavaScript applications,

their types, organizational impacts, and mitigation strategies.

What are JavaScript
Vulnerabilities

As JavaScript interacts with a website’s Document Object Model (DOM)

to provide extended functionalities, threat actors typically exploit

the security flaws of a DOM to inject malicious scripts into a web server

and get those executed on client browsers. With sophisticated script

execution, attackers can gain control of user accounts, compromise

web systems, or manipulate system/user data.

https://www.veracode.com/
https://www.veracode.com/

4 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

Cross-Site Scripting Vulnerabilities (XSS)

Cross-site scripting is an injection flaw that allows adversaries

to feed corrupt client-side scripts into the web page, triggered

for execution when users visit the page. Since such attacks can be

orchestrated through multiple entry points where the application

accepts user input, a cross-site scripting attack is usually complex

to mitigate. In the absence of appropriate input validation, the end

user’s browser cannot verify the authenticity of a script and ends up

executing it automatically. Since the browser assumes the script

is trustworthy, it can access the user’s session tokens, cookies,

and other sensitive application data stored within the browser.

XSS-based common attacks are primarily categorized into:

• Stored/Persistent XSS

In such attacks, the compromised server permanently

stores the script, which is then served to victims along

with their requested information.

• Reflected XSS

In these attacks, the malicious script is injected

and immediately reflected off the server in a response

that includes user inputs sent to the server. The malicious

payload is delivered via an alternate route, such as

malicious links in email messages and other websites.

Since the untrusted script comes from a valid server,

the browser assumes the script to be legitimate

and eventually executes it.

• DOM-based XSS

This involves a malicious script delivered by modifying

the DOM environment within the user’s browser.

Unintended Script Execution

JavaScript embeds functions within HTML pages when interacting

with a web page’s DOM. Without JavaScript and HTML code

encoding, attackers can access and leverage security loopholes

to post unscrupulous content within these functions. As a result,

every client machine that connects to the web page accesses

and executes corrupt scripts.

Source Code Vulnerabilities

These vulnerabilities are introduced when developers fail to follow

secure coding practices. JavaScript relies on various open-source

libraries, frameworks, and open-source packages that simplify

product development. While such components reduce time

and effort in development, these packages are known

to introduce a wide array of security vulnerabilities in the absence

of appropriate validation. Using unsafe open-source packages

before utilization gives rise to security inconsistencies that allow

attackers to inject and execute malicious scripts.

Exposure Of Session Data

JavaScript applications that expose session tokens such as

cookies and user session IDs, an attacker can impersonate

a user and gain unauthorized access to data and resources.

When session information is bundled together with the data

accessed, an application may present its values to unintended

entities. Some web applications also cache session data,

tempting attackers to hijack sessions through compromised

proxies and gateways.

Types of JavaScript Vulnerabilities

https://www.veracode.com/
https://www.veracode.com/

5 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

Cross-Site Request Forgery (CSRF)

CSRF vulnerabilities allow attackers to trick legitimate users into

executing malicious activities while logged in to a web application.

This attack relies on the flaw where the browser automatically

includes all cookies while processing requests. Since the user

is already authenticated to the application, the website cannot

differentiate malicious requests from legitimate ones. The attack

typically begins with a social engineering technique that forces

the authorized user to perform malicious acts on the hackers’ behalf.

The attacker uses various stealth tactics to transmit their requests,

including hidden forms, specially-designed image tags, and

AJAX requests.

Relying Only On Client-Side Validation

JavaScript applications typically employ client-side validation

techniques to improve user experience. However, this form of

validation is considered insufficient since it can be deactivated

by the user, allow for workarounds, and fail if there is an error

in the script. This permits attackers to fake data inputs,

subsequently allowing unsafe, unsanitized data to reach

the webserver.

Server-Side JavaScript Injection

Besides the importance of client-side validation, it is equally crucial

to enforce a robust server-side validation for comprehensive

protection. In instances where an application lacks sanitization

and filtering mechanisms of user-controlled data, attackers can inject

and execute arbitrary code on the webserver. These vulnerabilities

often occur in functions that parse unvalidated user inputs,

including scripts that the server an execute. The attackers typically

deploy malicious code under the context of file system interaction

and server configuration, which allows for partial or outright

compromise of the host server.

Client-Side Logic Vulnerabilities

JavaScript engines enable fast and efficient client-side processing.

At the same time, the feature acts conducive to rapid application

development practices, and client-side processing, however,

it grants the user complete control over the application’s logical

decision-making. Instances where sensitive operations are included

on the client-side, a compromised user device enables adversaries

to quickly access and control the web application‘s behavior

through the browser.

https://www.veracode.com/
https://www.veracode.com/

6 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

The Impact of JavaScript Vulnerabilities

Attackers primarily leverage JavaScript vulnerabilities to orchestrate client-side attacks. While JavaScript is a client-side application

programming language, flaws in frameworks can also facilitate server-side attacks. Once a server is compromised, the attacker can inject

arbitrary code into legitimate scripts, allowing them to access data on user behavior and browsing context. In websites that lack user input

and output validation, the server may potentially execute these malicious scripts, with far-reaching impacts including:

1.

Uncontrolled client application changes

As JavaScript relies on multiple third-party frameworks and code libraries, malicious actors can push unwanted features within third-party

code to expose application data and system configuration.

2.

Exposure of sensitive information

When an application invokes a third-party script, the browser connects directly with third-party servers. Requests to these servers typically

contain sensitive information such as the referrer, previous session cookies, and the browser’s original IP address. This typically grants

the third-party website access to data on the application, organization, and users. Once attackers gain access to such information,

they can further compromise the web server’s sanity and integrity.

3.

Execution of malicious code at the client-side

When invoking and integrating packages into a website, developers rarely review the sanity of third-party code libraries. Once the client

request reaches the webserver hosting the thirdparty code, the registered user’s permissions and privileges are susceptible to malicious

exploits. Executing unchecked third-party code also reduces the validity of any tests performed before entering production.

https://www.veracode.com/
https://www.veracode.com/

7 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

How to Identify
JavaScript Vulnerabilities

Veracode Dynamic Analysis offers a comprehensive range of API and web

application vulnerability scanners to help reduce risk exposure. The solution

provides an automatic scanner to identify and remediate inherent JavaScript

attacks such as JavaScript injections, CSRF, and XSS.

Veracode Dynamic Analysis blends into development pipelines through

multiple seamless integrations to save time and money on extensive JavaScript

penetration tests. The solution allows cross-functional teams to perform

security analysis within minutes, enabling a comprehensive white-box

approach to penetration tests.

https://www.veracode.com/
https://www.veracode.com/
https://www.veracode.com/products/dynamic-analysis-dast

8 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

1.

User Input Validation

Sanitizing the type and content of user-supplied data helps

prevent the storage and execution of malformed scripts

in downstream application components. User inputs should

be validated when entering the data flow, ensuring the application

does not accept malicious scripts that can generate malformed

data. Aggregated data received from external entities should be

subject to input validation, which helps prevent injection attacks,

XSS, and other JavaScript attack vectors. Input validation should

also be performed at semantic and syntactic levels to ensure

only admissible data structures, acceptable characters, and

values are used within the browsing context.

Strategies to implement input validation include:

• Data type validators bundled within

development frameworks

• Schema-based validation

• Exception handling for type conversion

• Value range checks

• Regular expressions

2.

CSRF Tokens

A server typically generates and stores a token linked to

the user session. This token is included as a validation voucher

when a client submits a request. The server then compares

the token included in the user request with the one stored.

If the values do not match, the web server rejects the request.

This makes it difficult for hackers to construct a valid HTTP request

that the server can execute. CSRF tokens are always generated

with a Pseudo-Random number generator seeded with a timestamp,

making it unpredictable with significant entropy. This facilitates

additional security by restricting hackers from analyzing tokens

based on existing samples they have obtained.

Techniques to Mitigate JavaScript Vulnerabilities

https://www.veracode.com/
https://www.veracode.com/

9 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

3.

Content Security Policies (CSPS)

Most attackers use JavaScript source vulnerabilities to bypass

the same-origin policy. A CSP provides an additional layer

of protection against these attackers by providing directives

that specify which data sources can interact with the web app.

Such directives are specified in HTTP response headers that define

permitted sources for web assets. Once a CSP header is specified,

the browser restricts content execution from sources not included

in the CSP whitelist. Some directives specified in CSPs include:

• default-src: the default directive that defines

the fallback policy for most directives

• script-src: provides a whitelist of script sources

• style-src: defines the sources of CSS stylesheets

• connect-src: permitted sources for direct connections

that use WebSocket, EventSource and

XMLHttpRequest objects

• object-src: controls the sources of plugins

• img-src: specifies sources of images

• font-src: specifies target sources for loading fonts

4.

User Input Encoding/Escaping

JavaScript vulnerability attacks are typically orchestrated

by supplying input with special characters executed by

the web page’s Javascript, CSS, or HTML. Encoding and escaping

are common approaches to stopping this injection attack

by transforming user-supplied data into a unified format.

These transformations ensure that multiple systems safely share

and consume data while accurately interpreting user inputs

into their equivalent forms.

5.

Subresource Integrity Checking

It is essential to check the integrity of the third-party

and external scripts before they are fetched from their host servers

for execution. Modern web browsers support Subresource Integrity

(SRI) checking that verifies the validity of external scripts using

a cryptographic hash for external JavaScript files. The hash value

is generated using a command-line tool or specialized SRI hash

generator, which is then added to HTML code by embedding it

to the integrity attribute of the <link> or <script> element.

https://www.veracode.com/
https://www.veracode.com/

10 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

Best Practices to Prevent
JavaScript Attacks

Avoid Using The Eval() Function

The eval() function is a global JavaScript function that evaluates an input string

as JavaScript code before it is marked for execution. However, the function

is considered unsafe for web applications since a malicious user can include

an arbitrary script within input strings. Developers should avoid user input evaluation

or parse JSON data using the eval() function as a recommended practice.

Avoid Transmitting CSRF Tokens In Session

Transmitting CSRF tokens within cookies makes them susceptible to exposure

since attackers can intercept and access session cookies. When using request

submission forms, it is best for CSRF tokens to be included as hidden fields or

headers in AJAX calls.

Obfuscate Javascript Code

Attackers can only abuse scripts if they understand the structure and logic.

Therefore, a basic line of defense is to keep the details of code implementation

unknown to unauthorized users. Code obfuscation involves modifying the code’s

executables to remain functional while staying hidden from attackers.

Enforce Safe Dom Manipulation Methods

Some JavaScript methods, such as innerHTML, do not limit values parsed onto

them. This allows attackers to embed unsafe characters at the data input points.

Developers are recommended to leverage mechanisms that can escape or

encode any potentially malicious content, helping to protect the application

against DOM-based XSS attacks.

https://www.veracode.com/
https://www.veracode.com/

11 | Preventing Javascript Vulnerabilities: A complete guide veracode.com

Strengthen Your Web
Applications and APIs
Against Attacks

As one of the critical approaches to mitigating modern application security risks,

identifying and countering JavaScript vulnerabilities is often considered the

first step. To support this, Veracode Dynamic Analysis helps reduce security

vulnerabilities on web applications, APIs, and JavaScript with its automated

vulnerability scanner. The Veracode Platform is built to scan a wide range of

JavaScript attacks, including XSS, CSRF, and HTTP host header attacks, to

eliminate blind spots that potentially allow for the execution of malicious scripts.

Veracode Dynamic Analysis is part of the Intelligent Software Security Platform.

This platform seamlessly integrates security testing solutions such as Static

Analysis and Software Composition Analysis into your modern development

workflows to find and fix vulnerabilities across the entire software development

lifecycle (SDLC).

Veracode benchmarks application security against the OWASP top 10

to enhance the security posture and add immediate value to development,

security, and QA efforts. Run your first test with a free trial today and see

how the platform can help mitigate security risks by administering robust

security on your JavaScript applications.

Start Free Today

https://www.veracode.com/
https://www.veracode.com/
https://www.veracode.com/products/dynamic-analysis-dast
https://www.veracode.com/products/dynamic-analysis-dast

Veracode is intelligent software security. The Veracode

Software Security Platform continuously finds flaws and

vulnerabilities at every stage of the modern software

development lifecycle. Prompted by powerful AI trained by

trillions of lines of code, Veracode customers fix flaws faster

with high accuracy. Trusted by security teams, developers,

and business leaders from thousands of the world’s leading

organizations, Veracode is the pioneer, continuing to

redefine what intelligent software security means.

Learn more at www.veracode.com,

on the Veracode blog and on Twitter.

Copyright © 2023 Veracode, Inc. All rights reserved. Veracode is a

registered trademark of Veracode, Inc. in the United States and may be

registered in certain other jurisdictions. All other product names, brands

or logos belong to their respective holders. All other trademarks cited

herein are property of their respective owners.

https://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor

	JavaScript Vulnerabilities:
A popular target
	What are JavaScript Vulnerabilities
	Types of JavaScript Vulnerabilities
	The Impact of JavaScript Vulnerabilities
	How to Identify
JavaScript Vulnerabilities
	Techniques to Mitigate JavaScript Vulnerabilities
	Best Practices to Prevent JavaScript Attacks
	Strengthen Your Web Applications and APIs
Against Attacks

