
1  |  State of Software Security 2023: EMEA

State of Software Security 2023: EMEA

Unveiling the State of
Software Security in
Europe, Middle East,
and Africa

Securing the Future:

2  |  State of Software Security 2023: EMEA

Each year we publish a series of cuts of the data specific to verticals or geographic regions as companion research to the

State of Software Security (SoSS). These cuts allow us to narrow the lens slightly and explore where we are, how we got

there, and how we could do things better. It also provides an excellent chance to tease out relevant trends that get somewhat

buried in the aggregate data view of the main report. This search for the signal also lets us baseline performance against

peers in other geographies and yields an aggregate view.

Within this report we refer to a horizontal based view of organizations in Europe, Middle East, and Africa or EMEA. This

means that by its nature the view is essentially an average of all industry verticals and all countries, which introduces some

forcing. However, given the sample size of applications and organizations that produce them, we were thankfully only left

with a few curious question marks in the data, which we will call out when we get to them.

A glance down at Figure 1 reveals that EMEA is in the middle of the pack in most areas but significantly behind the Americas

regarding the proportion of applications with any flaws. In the Americas about 73% of applications carry security flaws in

their last scan over the last 12 months, whereas in EMEA that number is just over 80%. APAC is performing worse, except in

High Severity Flaws where EMEA drops to the bottom of the pack. The reason for the positions of the three Geographies is

unclear. Some clues can be found in some of the later figures, but some conflicting data as well. Such is the state of things, but

it is an interesting view to see North America so far ahead of the other Geographies. That should not be mistaken for praise

though since all Geos have applications with a very high percentage of OWASP Top 10 and CWE Top 25 flaws. Note that this

is a slice in time: an application’s last scan in the last 12 months. Note also that there is not a count here in this view, but we’ll

get to that later.

16.5%

80.1% 74.2%

56.1%

19.1%

83.3% 77.9% 65.3%

72.8% 68.7%

59.9%

19.5%APAC

EMEA

Americas

EMEA

Americas

APAC

Any Flaws OWASP Top 10 CWE Top 25 High Severity

Figure 1: Percent of applications that had a flaw found in their last scan over the last 12 months, by category.
Lower numbers are better.

3  |  State of Software Security 2023: EMEA

When it comes to language preference the EMEA region is the top user of Java (see Figure 2). In some early discussions

we considered that this might be one of the reasons for the higher percentages of flaws in the last scan (see Figure 1.) If we

remember the Remediation Timeline in the original research (State of Software Security 2023), application teams using Java

tended to remediate at a slower rate than those using .NET or JavaScript, causing flaws to hang around for a lot longer. By

proxy that would leave flaws to be found. At least that was perhaps an early explanation. This theory had a hole in it though.

In our Financial Services cut though, those application teams use Java overwhelmingly as their preferred language, and their

Figure 1 numbers were a good 10% better in almost every category except High Severity. This means we have a potential

correlation, but probably a false flag that they are directly related.

In any case we cannot shift the responsibility to the programming language in use. So the burden of responsibility for

improving the numbers in Figure 1 lies with the teams and how they deliver code, maintain it, and remediate the flaws that

are discovered. Sadly this statement is validated further on with Figure 4 with a look at EMEA performance for application

lifecycle. To wrap up Figure 2, the other programming languages aside from Java are closely in line with other geographies

and in general are within a percent of the Americas. APAC has a unique profile though with almost a full 22% in the “Other”

category which includes any language not in the top 3 in other geographies and less preference for Java.

44.0% 26.7% 14.5% 14.7%

38.1% 23.0% 17.0% 21.9%

47.2% 25.7% 13.5% 13.6%

Java .NET JavaScript Other

APAC

Americas

EMEA

Figure 2: Development Language Usage by Geographical Region

https://www.veracode.com/state-of-software-security-report

4  |  State of Software Security 2023: EMEA

Having a look at Figure 3, which shows the top flaws by scan type, we see that EMEA generally aligns to the overall flaw types

and proportion of applications, except the proportion of applications with flaws reported from software composition analysis

(SCA). Here being further right indicates a higher proportion of applications of flaws reported in EMEA than outside. The

knee jerk reaction is to say, “Well Java is almost 95% open-source code. That must be it.” And this time you might be right.

We saw a similar thing in the Financial Services cut.

Java applications are overwhelmingly (>95%) made up of 3rd party code (see SoSS version 12 Figure 6), and Financial

Services and EMEA organizations are big users of Java. Given that Software Composition Analysis (SCA) picks up flaws in the

composition of open-source code included in applications, the probability of finding publicly reported flaws using SCA rises

commensurately with that higher percentage of open source code usage. This is not merely saying that these applications

are full of flaws though. It only indicates that scans found libraries or packages containing flaws and reported them. After

the report of flaws is delivered, an SCA product will also advise on available upgrades to versions of the libraries that do not

contain those flaws. An interesting correlation to be sure, and one we saw again in an inverted fashion where fewer flaws

were found with .NET and Public Sector. In those organizations .NET was in higher use and Java lower than in the broader

market. This seems to be a strong theory and is worth testing further in the next SoSS report.

19.7% 20.8%

23.4%22.3%

39.8%31.5%

42.4%37.7%

41.3% 43.7%

45.4% 46.9%

55.0% 58.6%

60.2%54.8%

59.7% 59.9%

64.2% 68.1%

35.1% 43.0%

55.3%40.5%

50.2%43.7%

62.0%45.6%

49.8% 55.6%

52.3% 54.1%

55.8% 61.6%

72.7%58.2%

60.8% 74.1%

66.4% 67.4%

8.7% 9.2%

10.6%9.2%

13.3%4.4%

43.9%30.4%

47.9% 55.5%

56.8% 59.7%

50.2% 60.8%

71.8%71.2%

74.2% 75.4%

96.5% 96.5%

Non-EMEA

EMEA

Non-EMEA

EMEA

Non-EMEA

EMEA

Encapsulation
SQL Injection

Cross-Site Scripting (XSS)
Insufficient Input Validation

Directory Traversal
Credentials Management

Code Quality
Information Leakage
Cryptographic Issues

CRLF Injection

Static Analysis

Code Injection
Cross-Site Scripting (XSS)

Session Fixation
Deployment Configuration

Authentication Issues
Encapsulation

Cryptographic Issues
Information Leakage

Insecure Dependencies
Server Configuration

Dynamic Analysis

Deployment Configuration
Authorization Issues

Cross-Site Scripting (XSS)
Cryptographic Issues

Buffer Management Errors
Directory Traversal

Code Injection
Encapsulation

Insufficient Input Validation
Information Leakage

SCA Analysis

Percent of Applications

Figure 3: Top Flaw Types by Scan Type

https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-v12-nwm.pdf

5  |  State of Software Security 2023: EMEA

Application lifecycle management is something that not a lot of organizations do , and as a disciplined practice even fewer.

Planned obsolescence for applications is a bitter pill to swallow. It’s expensive in terms of development hours and net cost to

replace the functionality that was provided by an aging application. It seems that many organizations in EMEA keep updating

applications but with less focus on quality, as is demonstrated by Figure 4.

As applications age, the knowledge of the inner workings tends to disperse to other teams and other projects (or it simply

fades from memory). The more hands that touch an application, the more varied the methods of accomplishing those

functions becomes. This can be minimized with disciplined style guidelines and code reviews. The beginning Figure 4 shows

that 40% of applications in EMEA introduce new flaws. The pay down of the flaw debt is rapid though and falls in line with

everyone else for about 2 years. After that, the introduction of new flaws diverges rapidly, and clearly more attention to this

portion of the application lifecycle is needed. Whatever choices are made after the first few years should be examined to get

back to a baseline of fewer new flaws.

0%

10%

20%

30%

40%

50%

0 1 2 3 4 5

Age of Application (years)

Pe
rc

en
t o

f A
pp

lic
ati

on
s

w
ith

 N
ew

 F
la

w
s

Figure 4: Application Size by Age of Application

EMEA

Everyone else

In the main SoSS 2023 report, we saw a combination of factors that influence

the probability of flaw introduction, and we examined those same factors for

how many flaws were introduced (or reduced) if they were. In Figures 5 and 6

we will examine this for EMEA. Given our examination of the lifecycle in Figure

4 we know that applications delivered by these teams have a different profile

that is sometimes on par with but later worse than applications delivered by

organizations outside of EMEA. Looking back once more to Figure 1 we know

there is more to the story though. Sadly, completion of security training yielded

a statistically inconclusive result for EMEA applications so we have omitted that

factor in this analysis. From the much larger “all customer” data set analyzed

in SoSS 2023 we know that completion of security training has a benefit and it

stands as a recommendation.

The baseline chance or
probability that a flaw will
be introduced is 27% in
any given month .

6  |  State of Software Security 2023: EMEA

7  |  State of Software Security 2023: EMEA

To begin with, the baseline chance that a flaw is introduced in any given month is 27%, and the factors in Figure 5 influence

that baseline probability. Initiating scanning via API (as opposed to API Scanning) is a rough measure of maturity. Teams that

integrate scanning via API likely have more automation and control over the development pipeline. We see that the EMEA

development teams leveraging scanning via API reduce the chance of flaw introduction per month by 2.3 points. That is

almost on par with non-EMEA organizations launching scans “and” - “API, and has a slightly” better correlation to reducing

the probability that a flaw is introduced than for all other organizations.

We also see slightly weaker effects from application age in EMEA than with the general population of applications. We

double checked and applications in this region are growing as fast as in others. Applications delivered by teams in EMEA

grow in line with other regions, but over time, as you can see in Figure 4, the probability of new flaw introduction trends

higher all the way out to the five-year mark. This mutes the usual probability-reducing influence of age and is overpowered

by the probability-increasing influence of growth over time.

The way this works is 10% growth in size increases the probability of flaw introduction by .6 points. Since the average

application grows 40% year over year, that means it is 4x for typical application growth. That results in a 2.4 point influence

on flaw introduction. EMEA applications curiously buck the trend and age has a lower than typical benefit than applications

in the general population. That is clearly visible by the upwards line you see in Figure 4. As mentioned this performance

indicates that there is a dwindling focus on keeping applications secure over time. By contrast, applications in the general

population are observed having a less marked increase in new flaw introduction as time goes by.

Returning to Figure 5, Scans last month, App Size, and Months since last scan track closely to the general population.

However, once again we see an outlier with Flaw Density which cross-validates that EMEA applications are subject to less

diligence because Flaw Density drives up the probability of flaw introduction. Again, that correlates with the upward track

over time that we saw in Figure 4. We know that teams that scan regularly bring their flaw baseline down and it stays there,

and this is a common recommendation for how to mature an AppSec program.

Reduces the probability new flaws are introduced

Increases the probability new flaws are introduced

Flaw Density (flaw/1mb)

Months since last scan

App Size (10% change)

Scans last month

Age of App (years)

Scanning via API

2.2%

1.3%

0.6%

-0.4%

-1.4%

-2.0%

2.4%

1.5%

0.6%

-0.7%

-1.0%

-2.3%

All Applications

All Applications

Public Sector Applications

Public Sector Applications

Figure 5: Factors Influencing the Probability of Flaw Introduction

8  |  State of Software Security 2023: EMEA

Once we have adjusted our base chance with the positive and negative factors that drive the probability of flaw introduction

in any given month, we see those same factors in Figure 6 and how they influence the number of flaws that are introduced.

To clarify, in Figure 5 those positive and negative factors influence whether any flaws are introduced at all. Then Figure 6

indicates how many are introduced when flaws are introduced. Many months may go by without any new flaws but code

growth and months since the last scan invariably increases the probability that something will be introduced and then the

next scan finds it.

Once again we see that initiating scanning via API has a profound effect, but curiously despite re-examining the data and

looking for outliers it seems that EMEA applications do not benefit as much as non-EMEA applications. Sadly we have to take

the data as it is, but getting control of the pipeline and launching scans via API correlate to good performance everywhere

else, so it remains a recommendation.

Again we see the positive and negative sides of the cadence coin in Scans last month (good!) and Months since last scan (bad!)

Age again doesn’t reduce the number of flaws introduced as much and application size increases the number of flaws more

than the general population. Those two together are likely due to what we see in the application lifecycle in Figure 4. Flaw

Density is much more influential than non-EMEA and likely driven by the upward trend in Figure 4 as well. It bears repeating

that something needs to be done to maintain focus on applications delivered by EMEA teams as they age.

Reduces the amount of flaws being introduced

Months since last scan

Flaw Density (flaw/1mb)

App Size (10% change)

Scans last month

Age of App (years)

Scanning via API

5.1%

3.3%

2.7%

-1.6%

-6.2%

-17.9%

6.6%

5.2%

3.4%

-6.0%

-5.5%

-0.3%
All Applications

Public Sector Applications

Increases the amount of
flaws being introduced

Figure 6: Factors Influencing the Amount of Flaws Introduced

If you look back at SOSS volumes 9, 10, 11, and 12 you’ll see that
applications that are scanned at a regular cadence fix more flaws
faster than those that are only scanned periodically. Security seems
to prefer agile development.

https://www.veracode.com/sites/default/files/pdf/resources/ipapers/state-of-software-security-volume-9/index.html
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-10-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-volume-11-veracode-report.pdf
https://www.veracode.com/sites/default/files/pdf/resources/sossreports/state-of-software-security-v12-nwm.pdf

9  |  State of Software Security 2023: EMEA

Recommendations
Examine the application lifecycle
Our data shows that EMEA applications increase their new flaws at the beginning

of the second year, and we cannot say for sure why that is happening in any

organization. However, it is not optimal and there must be reasons why it occurs.

Application delivery teams and AppSec should take a look together and build in

processes such as style guidelines, better documentation, and code review if they are

not in place. If they are in place, audit them for effectiveness. These things make code

more maintainable over time. Finally explore lifecycle management and the idea of

planned obsolescence. This may be preferable to maintaining code that has become

truly unmaintainable and yields many flaws each time it is touched.

Keep the scan cadence regular
In combination with the previous two recommendations to fix the backlog and

look at the application lifecycle, let’s look at one way this might be made easier to

do. Figure 4 looks bad over time. One probable cause is a scan cadence that is not

as regular as it should be, so when flaws are discovered, they are found in bunches.

Given that age in Figure 6 really drives up the number of flaws introduced, scanning

regularly should make the workload of finding and fixing flaws more predictable.

Optimistically speaking some tactical improvements like regular scan cadence should

improve the overall standings in Figure 1 so that flaws are not carried forward.

Get automated
Despite our results in the data, we know that initiating scans via API has a great

correlation with reducing the chances that flaws will be introduced, and then of

course reducing the number of flaws that are introduced. Why is that? Programs

that keep control over the CI/CD pipeline and leverage automation eliminate ad hoc

changes that have not been vetted through the processes. This could be processes

like code review, application security testing, change management, and many other

steps. Allowing developers to commit outside the guardrails of the application

delivery guidelines has perils. A goal for the next three years is to increase maturity in

this area—increase automation, and the benefits will follow.

Write simple code yourself
We saw the SCA outlier in Figure 3, and that also occurred in our Financial Services

data cut. Both EMEA and Financial Services organizations are big Java users. We

plan on testing in the next SoSS research to find out if this is indeed a Java thing.

For now a recommendation from our Open Source section of the State of Software

Security 2023 is a safe bet. Since Java applications are overwhelmingly open source,

teams need to discuss a purposeful way of when they should include relatively simple

libraries that bring dependency chains of questionable value. If it is simple code, write

it yourself, but don’t roll your own crypto or dive into a proprietary database. Fewer

dependencies by its nature should help.

10  |  State of Software Security 2023: EMEA

State of Software Security 2023:
Public Sector

End copy here. Lorem ipsum dolor sit amet, consectetur adipiscing

elit, sed do eiusmod tempor incididunt ut labore et dolore magna

aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco

laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure

dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat

nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt

in culpa qui officia deserunt mollit anim id est laborum.

Copyright © 2023 Veracode, Inc. All rights reserved. Veracode is a registered trademark of

Veracode, Inc. in the United States and may be registered in certain other jurisdictions. All other

product names, brands or logos belong to their respective holders. All other trademarks cited

herein are property of their respective owners.

Veracode is intelligent software security. The Veracode Software

Security Platform continuously finds flaws and vulnerabilities

at every stage of the modern software development lifecycle.

Prompted by powerful AI trained by trillions of lines of code,

Veracode customers fix flaws faster with high accuracy. Trusted by

security teams, developers, and business leaders from thousands

of the world’s leading organizations, Veracode is the pioneer,

continuing to redefine what intelligent software security means.

Learn more at www.veracode.com, on the Veracode blog

and on Twitter.

http://www.veracode.com/
https://www.veracode.com/blog
https://twitter.com/Veracode?s=20&t=q3okjv9JGX0uPU-DhXPMUw

