VULNERABILITY DEC)JER

oooooooooo

SQL injection (SQLi) is a high-severity vulnerability.
Attackers can exploit SQLi vulnerabilities to access or delete
data from the database and do other undesirable things.

o WHAT IS SOL INJECTION?

A SQL query is one : SQL injection occurs : An attacker can use
way an application when an application fails specially-crafted SQL
talks to the database. : to sanitize untrusted data : commands to trick the
. (such as data in web form . application into asking
fields) in a database query. . the database to execute

unexpected commands.

One-third of web applications have at least one
SQL injection vulnerability, according to Veracode’s
State of Software Security Report.

& [UseR.1 | Control an application’s data-driven behavior.

J

g Alter data in the database without authorization.

[

wamv] 7

— Access data without authorization.

= |[T=

~® S—
A

ANATOMY OF A 30L INJECTION ATTACK

A SQL query includes an argument, which tells the database to return
only the desired records. The value for that argument can be provided
by a user (in a form field, URL parameter, web cookie, etc.).

Reconnaissance
° KSTAEEI
INJECTION ATTAC Attack
® ® @ pcrion aTTaCK STAGE
ATTACKER Automation

THE RISK: DATA LEAKAGE

Some very large and devastating data breaches have been
the result of SQL injection attacks. Here are a few recent
examples and their consequences.

..

MOSSACK FONSECA

..

..

PHILIPPINES COMMISSION ON ELECTIONS (COMELEC)

VOTE

..

OATAR NATIONAL BANK
=\
—

SAMPLE SQOL INJECTION: BREAKING THE BANK

The following hypothetical example shows how a SQL
injection vulnerability could be exploited by an attacker to access
all bank account numbers and balances from a database.

LOOKING UP AN ACCOUNT BALANCE

When you access your bank account online, the database query ‘
might look like this (in Java):

String accountBalanceQuery =
"SELECT accountNumber, balance FROM accounts WHERE account_owner_id = "
+ request.getParameter("user_id");

try {
Statement statement = connection.createStatement();
ResultSet rs = statement.executeQuery(accountBalanceQuery);
while (rs.next()) {
page.addTableRow(rs.getInt("accountNumber"), rs.getFloat("balance™));
}

} catch (SQLException e) { ... }
EXAMPLE QUERY:

If you have the user ID 984, when you’re logged in you might visit the URL:

The accountBalanceQuery passed to the database would end up being:

SELECT accountNumber, balance FROM accounts WHERE account_owner_id = 984

RESULT: The database returns any account numbers and balances for user 10 984.

SOLINJECTION ATTACK ON THE BANK WEBSITE

The attacker could change the parameter “user_id” to be interpreted as:

@ OR 1=1

And this results in accountBalanceQuery being:

SELECT accountNumber, balance FROM accounts WHERE account_owner_id = @ OR 1=1

Because 1=1in all cases, when this query is passed to the database, it will
return all the account numbers and balances it has stored.

RESULT: The attacker now knows every user's account numbers and balances.

HOW TO REPAIR THE VULNERABLE CODE

A developer could easily repair this vulnerability by using a prepared
statement to create a parameterized query as below:

String accountBalanceQuery =
"SELECT accountNumber, balance FROM accounts WHERE account_owner_id = ?";

try {
PreparedStatement statement = connection.prepareStatement(accountBalanceQuery);
statement.setInt(1l, request.getParameter("user_id"));
ResultSet rs = statement.executeQuery();
while (rs.next()) {
page.addTableRow(rs.getInt("accountNumber"), rs.getFloat("balance™));

}
} catch (SQLException e) { ... }

RESULT: If an attacker attempts to supply a value that's not a simple integer, then
statement.setint() will throw a SQLException error rather than permitting the query to complete.

PREVENTING SOL INJECTION ATTACKS

SQL injection is a common but avoidable vulnerability.
Developers can follow these best practices to avoid SQLIi
vulnerabilities and limit the damage they can cause.

i,

o : . . .
Discover SQLi vulnerabilities by routinely
testing your applications using both static

: > gy PP C)

and dynamic testing.

Avoid and repair SQLi vulnerabilities by using
parameterized queries.

These types of queries specify placeholders for
parameters, so the database treats them as data
rather than part of a SQL command.

Prepared statements and object-relational
mappers (ORMs) make this easy for developers.

Remediate SQLi vulnerabilities by escaping inputs
before adding them to the query.

Use this technique only where prepared statements
are unavailable.

Mitigate the impact of SQLi vulnerabilities by
enforcing least privilege for accessing the database.

SMART DEVELOPERS, SECURE DEVELOPMENT

Five Principles for Securing DevOps

VERAC ¢ DE

LEARN MORE AT
f ¥ in N\ O

https://www.veracode.com/devops5
https://www.wada-ama.org/en/media/news/2016-09/wada-confirms-attack-by-russian-cyber-espionage-group
www.hackread.com/world-anti-doping-agency-site-hacked/
https://www.troyhunt.com/when-nation-is-hacked-understanding/
http://www.gmanetwork.com/news/story/563633/scitech/technology/int-l-web-security-expert-slams-comelec-for-slow-acknowledgment-of-data-hack
http://www.ibtimes.co.uk/qatar-national-bank-leak-security-experts-hint-sql-injection-used-database-hack-1557069
https://www.veracode.com/
https://www.facebook.com/VeracodeInc/
https://twitter.com/Veracode
https://www.linkedin.com/company/veracode
https://www.veracode.com/blog
https://info.veracode.com/web-contact-us.html

